152 resultados para MODULATED NOISE
Resumo:
Performance at the Joinery, Dublin, at at Spatial Music Collective concert
Resumo:
performed by "String Noise" the ensemble that commissioned the work. Venue: EXAPNO in Brooklyn, NYC.
Resumo:
Performed by Ensemble String Noise at PIANOS, NYC.
Resumo:
The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in-and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required.
Resumo:
During the delivery of advanced radiotherapy treatment techniques modulated beams are utilised to increase dose conformity across the target volume. Recent investigations have highlighted differential cellular responses to modulated radiation fields particularly in areas outside the primary treatment field that cannot be accounted for by scattered dose alone. In the present study, we determined the DNA damage response within the normal human fibroblast AG0-1522B and the prostate cancer cell line DU-145 utilising the DNA damage assay. Cells plated in slide flasks were exposed to 1 Gy uniform or modulated radiation fields. Modulated fields were delivered by shielding 25%, 50% or 75% of the flask during irradiation. The average number of 53BP1 or ?H2AX foci was measured in 2 mm intervals across the slide area. Following 30 minutes after modulated radiation field exposure an increase in the average number of foci out-of-field was observed when compared to non-irradiated controls. In-field, a non-uniform response was observed with a significant decrease in the average number of foci compared to uniformly irradiated cells. Following 24 hrs after exposure there is evidence for two populations of responding cells to bystander signals in-and out-of-field. There was no significant difference in DNA damage response between 25%, 50% or 75% modulated fields. The response was dependent on cellular secreted intercellular signalling as physical inhibition of intercellular communication abrogated the observed response. Elevated residual DNA damage observed within out-of-field regions decreased following addition of an inducible nitric oxide synthase inhibitor (Aminoguanidine). These data show, for the first time, differential DNA damage responses in-and out-of-field following modulated radiation field delivery. This study provides further evidence for a role of intercellular communication in mediating cellular radiobiological response to modulated radiation fields and may inform the refinement of existing radiobiological models for the optimization of advanced radiotherapy treatment plans. © 2012 Trainor et al.
Resumo:
When a collection of phenotypically diverse organisms compete with each other for limited resources, the population can evolve into tightly localised clusters. Past studies have neglected the effects of demographic noise and studied the population on a macroscopic scale, where cluster formation is found to depend on the shape of the curve describing the decline of competition strength with phenotypic distance. Here we show how including the effects of demographic noise leads to a radically different conclusion. Two situations are identified: a weak-noise regime in which the population exhibits patterns of fluctuation around the macroscopic description, and a strong-noise regime where clusters appear spontaneously even in the case that all organisms have equal fitness. editor's choice Copyright (C) EPLA, 2012
Resumo:
We outline our techniques to characterise photospheric granulation as an astrophysical noise source. A four component parameterisation of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disc centre. These components are constructed by averaging Fe I $6302 \mathrm{\AA}$ magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted are based on magnetic field and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of $200 \mathrm{G}$. Using these four component line profiles we accurately reconstruct granulation profiles, produced from modelling 12 x 12 Mm$^2$ areas on the solar surface, to within $\sim \pm$ 20 cm s$^{-1}$ on a $\sim$ 100 m s$^{-1}$ granulation signal. We have also successfully reconstructed granulation profiles from a $50 \mathrm{G}$ simulation using the parameterised line profiles from the $200 \mathrm{G}$ average magnetic field simulation. This test demonstrates applicability of the characterisation to a range of magnetic stellar activity levels.
Resumo:
We show that the expression of a Yersinia enterocolitica O:8 pYV-encoded type III secretion system was altered in a rough mutant (YeO8-R) due to elevated levels of FlhDC. H-NS might underlie flhDC upregulation in YeO8-R, and the data suggest a relationship between the absence of O antigen and the expression of H-NS.
Resumo:
Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1ß, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2~3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10~30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b macrophages; however, the increment levels were significantly lower than CFB and C3 genes. M1 and M2b macrophage supernatants enhanced CFB (Bb fragment) protein expression and C3 secretion by RPE cells. M1 macrophages may affect complement expression in RPE cells through the STAT1 pathway. Our results suggest that under inflammatory conditions, activated macrophages could promote the alternative pathway of complement activation in the retina via induction of RPE cell CFB and C3 expression.
Resumo:
Temporal dynamics and speaker characteristics are two important features of speech that distinguish speech from noise. In this paper, we propose a method to maximally extract these two features of speech for speech enhancement. We demonstrate that this can reduce the requirement for prior information about the noise, which can be difficult to estimate for fast-varying noise. Given noisy speech, the new approach estimates clean speech by recognizing long segments of the clean speech as whole units. In the recognition, clean speech sentences, taken from a speech corpus, are used as examples. Matching segments are identified between the noisy sentence and the corpus sentences. The estimate is formed by using the longest matching segments found in the corpus sentences. Longer speech segments as whole units contain more distinct dynamics and richer speaker characteristics, and can be identified more accurately from noise than shorter speech segments. Therefore, estimation based on the longest recognized segments increases the noise immunity and hence the estimation accuracy. The new approach consists of a statistical model to represent up to sentence-long temporal dynamics in the corpus speech, and an algorithm to identify the longest matching segments between the noisy sentence and the corpus sentences. The algorithm is made more robust to noise uncertainty by introducing missing-feature based noise compensation into the corpus sentences. Experiments have been conducted on the TIMIT database for speech enhancement from various types of nonstationary noise including song, music, and crosstalk speech. The new approach has shown improved performance over conventional enhancement algorithms in both objective and subjective evaluations.
Resumo:
Environmental Psychology has typically considered noise as pollution and focused upon its negative impact. However, recent research in psychology and anthropology indicates the experience of noise as aversive depends upon the meanings with which it is attributed. Moreover, such meanings seem to be dependent on the social context. Here we extend this research through studying the aural experience of a religious festival in North India which is characterised by loud, continuous and cacophonous noise. Reporting an experiment and semi-structured interviews, we show that loud noise is experienced as pleasant or unpleasant according to the meanings attributed to it. Specifically, the experiment shows the same noise is experienced more positively (and listened to longer) when attributed to the festival rather than to a non-festival source. In turn, the qualitative data show that within the Mela, noises judged as having a religious quality are reported as more positive than noises that are not. Moreover, the qualitative data suggest a key factor in the evaluation of noise is our participants’ social identities as pilgrims. This identity provides a framework for interpreting the auditory environment and noises judged as intruding into their religious experience were judged negatively, whereas noises judged as contributing to their religious experience were judged more positively. Our findings therefore point to the ways in which our social identities are implicated in the process of attributing meaning to the auditory environment.
Resumo:
Free space transmission of an on-off modulated sinusoidal signal through a phase conjugating lens (PCL) is theoretically examined using a combined time/frequency domain approach. The on-off keyed (OOK) signal is generated by a dipole antenna located in the far-field zone of the lens. The PCL consists of a dual layer of antenna elements interconnected via phase conjugating circuitry. We demonstrate that electromagnetic interference between antenna elements creates spatially localised areas of good-quality reception and zones where the signal is significantly denigrated by interference. Next, it is shown that destructive interference and packet desynchronisation effects critically depend on bit rate. It is also shown that a circular concave lens can be used to produce high-quality signal reception in a given direction while suppressing signal reception in all other directions. The effect that the bandwidth of the phase conjugating unit has on the transmitted signal properties for the cases of high and low bit rate OOK modulation are studied and a signal quality characterisation scheme is proposed which uses cross-correlation. The results of the study yields understanding of the performance of phase conjugating arrays under OOK modulation. The work suggests a novel approach for realising a secure communication wireless system.