131 resultados para MISSENSE MUTATIONS
Resumo:
X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein-Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV.
Resumo:
Ataxia telangiectasia (AT) is a recessive syndrome, including cerebellar degeneration, immunologic defects and cancer predisposition, attributed to mutations in the recently isolated ATM (ataxia telangiectasia, mutated) gene. AT is diagnosed in 1/40,000 to 1/100,000 live births, with carriers calculated to comprise approximately 1% of the population. Studies of AT families have suggested that female relatives presumed to be carriers have a 5 to 8-fold increased risk for developing breast cancer, raising the possibility that germline ATM mutations may account for approximately 5% of all breast cancer cases. The increased risk for breast cancer reported for AT family members has been most evident among younger women, leading to an age-specific relative risk model predicting that 8% of breast cancer in women under age 40 arises in AT carriers, compared with 2% of cases between 40-59 years. To test this hypothesis, we undertook a germ-line mutational analysis of the ATM gene in a population of women with early onset of breast cancer, using a protein truncation (PTT) assay to detect chain-terminating mutations, which account for 90% of mutations identified in children with AT. We detected a heterozygous ATM mutation in 2/202 (1%) controls, consistent with the frequency of AT carriers predicted from epidemiologic studies. ATM mutations were present in only 2/401 (0.5%) women with early onset of breast cancer (P = 0.6). We conclude that heterozygous ATM mutations do not confer genetic predisposition to early onset of breast cancer.
Resumo:
Factor XI is a serine protease that participates in the intrinsic pathway of blood coagulation. Patients deficient in factor XI exhibit varying degrees of post operative bleeding following invasive surgical procedures such as dental extractions. Objectives: The aim of the study was to identify the specific mutations in a patient from a family with known factor XI deficiency. Methods: Samples were obtained from the patient, his mother and his father and subjected to DNA sequencing. Each protein coding exon 2-15 of the factor XI gene was amplified by polymerase chain reaction (PCR) followed by bidirectional sequencing utilizing di-deoxy chain termination chemistry. Results: The patient had a factor XI level of 20% of normal. Initial sequencing of factor XI from the patient identified a point mutation (646G>A) and a putative splice site mutation (1567+4A>T) in intron 13. These are novel previously unreported mutations. DNA sequence analysis of the mother revealed the 1567+4A>T mutation and the father exhibited the 646G>A mutation. As a consequence the treatment proceeded without serious bleeding complication and required administration only of transexamic acid though factor XI was available as haemostatic cover. Conclusion: The two mutations identified in this family are novel; further laboratory investigation of the functional consequences of those mutations is currently underway. Although factor XI deficiency is rare in the Northern Irish population this study highlights the techniques available to sequence and analyse this and similar haematological disorders.
Resumo:
INTRODUCTION: To investigate the prevalence of calreticulin (CALR) mutations in JAK2- and MPL-non-mutated patients with suspected myeloproliferative neoplasm (MPN) from a large MPN clinic and confirm a diagnosis of MPN.
METHODS: JAK2/MPL-non-mutated patients from the Belfast City Hospital (BCH) with either of the MPNs - ET or MF - and diagnosed between 1988 and 2014 were selected for CALR screen. All cases were validated according to the WHO 2008 classification for MPNs. Statistical analysis was performed with Minitab 16 Statistical Software package. Exon 9 of CALR was amplified by PCR using genomic DNA, and mutations were detected by fragment analysis.
RESULTS: Of the 62 JAK2/MPL-non-mutated MPN patients screened, 57 had ET and 5 had MF; 34 patients (53.1%) carried CALR mutations. Three of 5 MF patients were CALR positive. Thirty-one ET patients (54.3%) harboured CALR mutation, whereas 26 (45.7%) were classified as 'triple negatives'.
CONCLUSION: Detection of CALR mutations in a cohort of JAK2/MPL-non-mutated patients with suspected MPN confirmed the diagnosis of MPN in around 53% of cases. This is lower than initially reported, but similar to subsequent studies. However, a sizable cohort of patients remains lacking a specific molecular marker.
Resumo:
The lymphocyte adaptor protein (LNK) is one of a family of adaptor proteins involved cell signalling and control of B cell populations. It has a critical role in regulation of signalling in hematopoiesis. Lnk negatively regulates cytokine initiated cell signalling and it functions as a negative regulator of the mutant protein in myeloproliferative neoplasms JAK2V617F. A number of mutations in LNK have been described in a variety of myeloproliferative neoplasms some of which have been demonstrated to cause increased cellular proliferation. The majority of mutations occur in exon 2. In a small number of cases idiopathic erythrocytosis with subnormal erythropoietin levels LNK mutations have been found which may account for the clinical phenotype. Thus investigation for LNK mutations should be considered in the investigation of idiopathic erythrocytosis and perhaps other myeloproliferative neoplasms.
Resumo:
Diabetic kidney disease (DKD) is a devastating diabetes complication, with known heritability not fully revealed by previous genetics studies. We performed the largest genome-wide association study of type 1 DKD to date, in a 13-cohort consortium of 15,590 individuals of European ancestry genotyped on the Illumina HumanCoreExome Beadchip, which allows exploration of coding variation in addition to genomic markers.
As prior work has shown that different characterizations of the DKD phenotype highlight distinct genetic associations, we investigated a spectrum of DKD definitions based on proteinuria and renal function criteria. Controls were DKD-free after a minimum of 15 years diabetes duration; cases had diabetes for at least 10 years prior to DKD diagnosis. We also performed a quantitative trait analysis of estimated glomerular filtration rate in all participants.
Our top finding was a missense mutation in COL4A3, rs55703767 (Asp326Tyr); the minor allele is common in Europeans (20%) and East Asians (13%) but not Africans (2%). This SNP had a genome-wide significant association with traditionally defined DKD (macroalbuminuria or end-stage renal disease [ESRD], (OR= 0.79, P=1.9×10-9), and a suggestive association with macroalbuminuria (OR= 0.79, P=1.6×10-6) and ESRD (OR= 0.79, P=4.5×10-5) individually. Though its PolyPhen score is 0.3 (benign), this SNP has been implicated as a splice site disruptor.
The COL4A3 gene encodes the alpha 3 subunit of Type IV collagen, the major structural component of basement membranes. Pathogenic mutations in COL4A3 have been identified in thin basement membrane nephropathy, familial focal segmental glomerulosclerosis, and Alport syndrome. A proxy (r2=0.6) for rs55703767 had no significant associations in the CKDGen consortium, suggesting its pathogenicity occurs solely in the setting of hyperglycemia.
By significantly increasing sample size we have discovered a novel locus underlying DKD risk, paving the way for better understanding of pathology, prevention, and treatment.
Resumo:
Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.
Resumo:
Background: RAS mutations predict resistance to anti-epidermal growthfactor receptor (EGFR) monoclonal antibodies in metastatic colorectal cancer. We analysed RAS mutations in 30 non-metastatic rectal cancer patients treated with or without cetuximab within the 31 EXPERT-C trial.
Methods: Ninety of 149 patients with tumours available for analysis were KRAS/BRAF wild-type, and randomly assigned to capecitabine plus oxaliplatin (CAPOX) followed by chemoradiotherapy, surgery and adjuvant CAPOX or the same regimen plus cetuximab (CAPOX-C). Of these, four had a mutation of NRAS exon 3, and 84 were retrospectively analysed for additional KRAS (exon 4) and NRAS (exons 2/4) mutations by using bi-directional Sanger sequencing. The effect of cetuximab on study end-points in the RAS wild-type population was analysed.
Results: Eleven (13%) of 84 patients initially classified as KRAS/BRAF wild-type were found to have a mutation in KRAS exon 4 (11%) or NRAS exons 2/4 (2%). Overall, 78/149 (52%) assessable patients were RAS wild-type (CAPOX, n = 40; CAPOX-C, n = 38). In this population, after a median follow-up of 63.8 months, in line with the initial analysis, the addition of cetuximab was associated with numerically higher, but not statistically significant, rates of complete response (15.8% versus 7.5%, p = 0.31), 5-year progression-free survival (75.5% versus 67.5%, hazard ratio (HR) 0.61, p = 0.25) and 5-year overall survival (83.8% versus 70%, HR 0.54, p = 0.20).
Conclusions: RAS mutations beyond KRAS exon 2 and 3 were identified in 17% of locally advanced rectal cancer patients. Given the small sample size, no definitive conclusions on the effect of additional RAS mutations on cetuximab treatment in this setting can be drawn and further investigation of RAS in larger studies is warranted.