145 resultados para LOW-ENERGY ELECTRONS
Resumo:
Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
The use of B-spline basis sets in R-matrix theory for scattering processes has been investigated. In the present approach a B-spline basis is used for the description of the inner region, which is matched to the physical outgoing wavefunctions by the R-matrix. Using B-splines, continuum basis functions can be determined easily, while pseudostates can be included naturally. The accuracy for low-energy scattering processes is demonstrated by calculating inelastic scattering cross sections for e colliding on H. Very good agreement with other calculations has been obtained. Further extensions of the codes to quasi two-electron systems and general atoms are discussed as well as the application to (multi) photoionization.
Resumo:
In a combined experimental and theoretical study on dissociative electron attachment (DEA) to pentafluorotoluene, pentafluoroaniline and pentafluorophenol in the energy range 0-3 eV we reveal the role of rearrangement and hydrogen bonded intermediates in the DEA process and show that HF formation can be used to enable otherwise inaccessible, efficient low energy DEA processes.
Resumo:
A new approach to spectroscopy of laser induced proton beams using radiochromic film (RCF) is presented. This approach allows primary standards of absorbed dose-to-water as used in radiotherapy to be transferred to the calibration of GafChromic HD-810 and EBT in a 29 MeV proton beam from the Birmingham cyclotron. These films were then irradiated in a common stack configuration using the TARANIS Nd:Glass multi-terawatt laser at Queens University Belfast, which can accelerate protons to 10-12 MeV, and a depth-dose curve was measured from a collimated beam. Previous work characterizing the relative effectiveness (RE) of GafChromic film as a function of energy was implemented into Monte Carlo depth-dose curves using FLUKA. A Bragg peak (BP) "library" for proton energies 0-15 MeV was generated, both with and without the RE function. These depth-response curves were iteratively summed in a FORTRAN routine to solve for the measured RCF depth-dose using a simple direct search algorithm. By comparing resultant spectra with both BP libraries, it was found that the effect of including the RE function accounted for an increase in the total number of protons by about 50%. To account for the energy loss due to a 20 mu m aluminum filter in front of the film stack, FLUKA was used to create a matrix containing the energy loss transformations for each individual energy bin. Multiplication by the pseudo-inverse of this matrix resulted in "up-shifting" protons to higher energies. Applying this correction to two laser shots gave further increases in the total number of protons, N of 31% and 56%. Failure to consider the relative response of RCF to lower proton energies and neglecting energy losses in a stack filter foil can potentially lead to significant underestimates of the total number of protons in RCF spectroscopy of the low energy protons produced by laser ablation of thin targets.
Resumo:
This paper introduces key ingredients of the dielectric response of a-alumina that go beyond an independent-particle (IP) treatment of the valence-electron excitations. The optical-response functions were calculated from first-principles both at the Bethe-Salpeter and the random-phase approximation (RPA) levels. Excitonic effects obtained within the Bethe-Salpeter framework were found essential for reproducing the low-energy part of the experimental spectra (below 15 eV) and the bound exciton in particular. For higher energies, local-field effects introduced through the RPA modified considerably the IP results and provided a satisfactory account of the reflectivity spectra and of the position and shape of the dominant bulk plasmon resonance in the electron energy-loss spectra.
Resumo:
It is well known that shape corrections have to be applied to the local-density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham exchange-correlation potential in order to obtain reliable response properties in time dependent density functional theory calculations. Here we demonstrate that it is an oversimplified view that these shape corrections concern primarily the asymptotic part of the potential, and that they affect only Rydberg type transitions. The performance is assessed of two shape-corrected Kohn-Sham potentials, the gradient-regulated asymptotic connection procedure applied to the Becke-Perdew potential (BP-GRAC) and the statistical averaging of (model) orbital potentials (SAOP), versus LDA and GGA potentials, in molecular response calculations of the static average polarizability alpha, the Cauchy coefficient S-4, and the static average hyperpolarizability beta. The nature of the distortions of the LDA/GGA potentials is highlighted and it is shown that they introduce many spurious excited states at too low energy which may mix with valence excited states, resulting in wrong excited state compositions. They also lead to wrong oscillator strengths and thus to a wrong spectral structure of properties like the polarizability. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically underestimate contributions to alpha and S-4 from bound Rydberg-type states and overestimate those from the continuum. Cancellation of the errors in these contributions occasionally produces fortuitously good results. The distortions of the LDA, BLYP, and BP spectra are related to the deficiencies of the LDA/GGA potentials in both the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC potentials produce high quality polarizabilities for 21 molecules and also reliable Cauchy moments and hyperpolarizabilities for the selected molecules. The analysis for the N-2 molecule shows, that both SAOP and BP-GRAC yield reliable energies omega(i) and oscillator strengths f(i) of individual excitations, so that they reproduce well the spectral structure of alpha and S-4.(C) 2002 American Institute of Physics.
Resumo:
We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.
Resumo:
Both ice and silica crystallize into solid-state structures composed of tetrahedral building units that are joined together to form an infinite four-connected net. Mathematical considerations suggest that there is a vast number of such nets and thus potential crystal structures. It is therefore perhaps surprising to discover that, despite the differences in the nature of interatomic interactions in these materials, a fair number of commonly observed ice and silica phases are based on common nets. Here we use computer simulation to investigate the origin of this symmetry between the structures formed for ice and silica and to attempt to understand why it is not complete. We start from a comparison of the dense phases and then move to the relationship between the different open (zeolitic and clathratic) structures formed for both materials. We show that there is a remarkably strong correlation between the energetics of isomorphic silica and water ice structures and that this correlation arises because of the strong link between the total energy of a material and its local geometric features. Finally, we discuss a number of as yet unsynthesized low-energy structures which include a phase of ice based on quartz, a silica based on the structure of ice VI, and an ice clathrate that is isomorphic to the silicate structure nonasil.
Resumo:
Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.
Resumo:
The structure of a Pt(111) electrode after treatment in an electrolyte and subsequent transfer to an UHV chamber was investigated ex situ by combined low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopy (AES). Treatment of the sample in a CO saturated 0.1 M HClO solution at potentials between -0.2 and 0.2 V versus Ag/AgCl caused a maximum CO coverage of about 0.75 as probed by cyclic voltammetry, which dropped by partial desorption to about 0.25 upon transfer to the UHV chamber. This adlayer exhibited a (distorted) 3×3 R30° pattern by RHEED (but not with LEED) exhibiting an average domain size of 2.3 nm at room temperature. This is identified with the same phase reported before from gas phase studies, as also corroborated by the similarities of the vibrational spectroscopic data. The same structure (albeit even more poorly ordered) was found after dissociative adsorption of methanol.
Resumo:
A short overview of laser-plasma acceleration of ions is presented. The focus is on some recent experimental results and the related theoretical work on advanced regimes. These latter include in particular target normal sheath acceleration using ultrashort low-energy pulses and structured targets, radiation pressure acceleration in both thick and ultrathin targets and collisionless shock acceleration in moderate density plasmas. For each approach, open issues and the need and potential for further developments are briefly discussed. © 2013 IOP Publishing Ltd.
Resumo:
Ultrasonic consolidation process is a rapid manufacturing process used to join thin layers of metal at low temperatures and low energy consumption. In this work, finite element method has been used to simulate the ultrasonic consolidation of Aluminium alloys 6061 (AA-6061) and 3003 (AA-3003). A thermomechanical material model has been developed in the framework of continuum cyclic plasticity theory which takes into account both volume (acoustic softening) and surface (thermal softening due to friction) effects. A friction model based on experimental studies has been developed, which takes into account the dependence of coefficient of friction upon contact pressure, amount of slip, temperature and number of cycles. Using the developed material and friction model ultrasonic consolidation (UC) process has been simulated for various combinations of process parameters involved. Experimental observations are explained on the basis of the results obtained in the present study. The current research provides the opportunity to explain the differences of the behaviour of AA-6061 and AA-3003 during the ultrasonic consolidation process. Finally, trends of the experimentally measured fracture energies of the bonded specimen are compared to the predicted friction work at the weld interface resulted from the simulation at similar process condition. Similarity of the trends indicates the validity of the developed model in its predictive capability of the process. © 2008 Materials Research Society.
Resumo:
We report on a low-damage method for direct and rapid fabrication of arrays of epitaxial BiFeO3(BFO) nanoislands. An array of aluminium dots is evaporated through a stencil mask on top of an epitaxial BiFeO3 thin film. Low energy focused ion beam milling of an area several microns wide containing the array-covered film leads to removal of the bismuth ferrite in between the aluminium-masked dots. By chemical etching of the remaining aluminium, nanoscale epitaxial bismuth ferrite islands with diameter ∼250 nm were obtained. Piezoresponse force microscopy showed that as-fabricated structures exhibited good piezoelectric and ferroelectric properties, with polarization state retention of several days.