117 resultados para Immune checkpoint blockade
Resumo:
Parasites and pathogens are ubiquitous and act as an important selection pressure on animals. Here, drawing primarily on our own research, mostly on insects, we illustrate how host-parasite interactions have played a role in the evolution of a range of phenomena, including animal coloration, social behavior, foraging ecology, sexual selection, and life-history tradeoffs, as well as how variation in host behavior and ecology can drive variation in parasitism risk and host allocation of resources to immunity and other antiparasite defenses. We conclude by identifying key areas for future study.
Resumo:
Purpose: To compare white blood cell populations from persons with neovascular age-related macular degeneration (nAMD) with that of age-matched controls.
Methods: Immunophenotyping for white blood cell populations (including CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes, CD4 and CD8 T-lymphocytes, CD56 natural killer cells, CD19 B-lymphocytes and CD16+HLA-DR- neutrophils), chemokine receptor expression analysis (CX3CR1 and CCR2) as well as cell activation analysis (MHC-II, HLA-DR, CD62L, STAT3) was performed using samples of peripheral blood from nAMD patients and age- and gender-matched controls.
Results: The percentage of CD4+ T cells was significantly reduced while the percentage of CD11b+ cells and CD16+HLA-DR- neutrophils was significantly increased in nAMD patients compared to controls. The percentage of classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) monocytes was similar between nAMD patients and controls, however there was a significant increase of CX3CR1 on the intermediate monocyte subset and on CD16+HLA-DR- neutrophils in nAMD compared to controls. HLA-DR was significantly increased in all monocyte subsets in nAMD compared to controls. Activation of Signal Transducer and Activator of Transcription 3 (STAT3) was significantly increased in nAMD patients compared to controls following stimulation with IL6.
Conclusions: Our results suggest an increased activation of the innate immune system in patients with nAMD. A better understanding of the role of the innate immune system in the pathogenesis of nAMD may help identify novel biomarkers and thus development of improved therapeutic strategies.
Resumo:
Intrinsic or acquired resistance to chemotherapy is a major clinical problem that has evoked the need to develop innovative approaches to predict and ultimately reverse drug resistance. A prolonged G(2)M arrest has been associated with apoptotic resistance to various microtubule-targeting agents (MTAs). In this study, we describe the functional significance of the mitotic spindle checkpoint proteins, BubR1 and Bub3, in maintaining a mitotic arrest after microtubule disruption by nocodazole and a novel series of MTAs, the pyrrolo-1,5-benzoxazepines (PBOXs), in human cancer cells. Cells expressing high levels of BubR1 and Bub3 (K562, MDA-MB-231, and HeLa) display a prolonged G(2)M arrest after exposure to MTAs. On the other hand, cells with low endogenous levels of mitotic spindle checkpoint proteins (SK-BR-3 and HL-60) transiently arrest in mitosis and undergo increased apoptosis. The phosphorylation of BubR1 correlated with PBOX-induced G(2)M arrest in four cell lines tested, indicating an active mitotic spindle checkpoint. Gene silencing of BubR1 by small interfering RNA interference reduced PBOX-induced G(2)M arrest without enhancing apoptotic efficacy. Further analysis demonstrated that PBOX-treated BubR1-depleted cells were both mononucleated and multinucleated with a polyploid DNA content, suggesting a requirement for BubR1 in cytokinesis. Taken together, these results suggest that BubR1 contributes to the mitotic checkpoint induced by the PBOXs.
Resumo:
Immune haemolytic anaemia (IHA) is a recognised complication after allogeneic stem cell transplantation (SCT) and occurs more frequently if marrow cells have been subjected to T cell depletion (TCD). Among 58 consecutive patients who underwent TCD-allogeneic SCT from volunteer unrelated donors for the treatment of CML at the Hammersmith Hospital during a 3-year period (1 March 1996 to 28 February 1999) we identified nine cases of IHA. All patients had a strongly positive direct and indirect antiglobulin test and in eight patients the serological findings were typical of warm-type haemolysis often with antibody specificities within the Rh system. All nine cases had clinically significant haemolysis and were treated initially with prednisolone and immunoglobulin. The onset of IHA coincided with the occurrence of leukaemic relapse in six cases, and the presence of host haemopoiesis confirmed by lineage-specific chimerism in all four cases studied. Five patients received donor lymphocyte infusions (DLI); in three molecular remission and the restoration of full donor chimerism coincided with resolution of haemolysis. We conclude that in the context of leukaemic relapse, DLI is an effective therapy for IHA following allografts involving TCD.
Resumo:
The bacterial plant pathogen Pseudomonas syringae causes disease in a wide range of plants. The associated decrease in crop yields results in economic losses and threatens global food security. Competition exists between the plant immune system and the pathogen, the basic principles of which can be applied to animal infection pathways. P. syringae uses a type III secretion system (T3SS) to deliver virulence factors into the plant that promote survival of the bacterium. The P. syringae T3SS is a product of the hypersensitive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc) gene cluster, which is strictly controlled by the codependent enhancer-binding proteins HrpR and HrpS. Through a combination of bacterial gene regulation and phenotypic studies, plant infection assays, and plant hormone quantifications, we now report that Chp8 (i) is embedded in the Hrp regulon and expressed in response to plant signals and HrpRS, (ii) is a functional diguanylate cyclase, (iii) decreases the expression of the major pathogen-associated molecular pattern (PAMP) flagellin and increases extracellular polysaccharides (EPS), and (iv) impacts the salicylic acid/jasmonic acid hormonal immune response and disease progression. We propose that Chp8 expression dampens PAMP-triggered immunity during early plant infection.
Resumo:
Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.
Resumo:
Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS) to investigate shared single nucleotide polymorphisms (SNPs) between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals), applying new False Discovery Rate (FDR) methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG), low density lipoproteins (LDL), high density lipoproteins (HDL)] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis). We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88), LDL (n = 87) and HDL (n = 52). Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2) and intestinal host-microbe interactions (e.g. ATG16L1). We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.
Resumo:
How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in "staying alive" in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual.
Resumo:
Neovascular age-related macular degeneration (nAMD) is the leading cause of irreversible blindness in developed countries. Recent advances have highlighted the essential role of inflammation in the development of the disease. In addition to local retinal chronic inflammatory response, systemic immune alterations have also been observed in AMD patients. In this study we investigated the association between the frequency of circulating leukocyte populations and the prevalence as well as clinical presentations of nAMD. Leukocyte subsets of 103 nAMD patients (most of them were receiving anti-VEGF therapy prior to enrolment) and 26 controls were analysed by flow cytometry by relative cell size, granularity and surface markers. Circulating CD11b(+) cells and CD16(hi)HLA-DR(-) neutrophils were significantly increased (P = 0.015 and 0.009 respectively) in nAMD when compared to controls. The percentage of circulating CD4(+) T-cells was reduced in nAMD patients without subretinal fibrosis (P = 0.026) compared to patients with subretinal fibrosis. There was no correlation between the percentage of circulating leukocytes and the responsiveness to anti-VEGF therapy in nAMD patients. Our results suggest that higher levels of circulating CD11b(+) cells and neutrophils are associated with nAMD and that reduced levels of CD4(+) T-cells are associated with the absence of subretinal fibrosis in nAMD.
Resumo:
Triple negative (TNBCs) and the closely related Basal-like (BLBCs) breast cancers are a loosely defined collection of cancers with poor clinical outcomes. Both show strong similarities with BRCA1-mutant breast cancers and BRCA1 dysfunction, or 'BRCAness', is observed in a large proportion of sporadic BLBCs. BRCA1 expression and function has been shown in vitro to modulate responses to radiation and chemotherapy. Exploitation of this knowledge in the treatment of BRCA1-mutant patients has had varying degrees of success. This reflects the significant problem of accurately detecting those patients with BRCA1 dysfunction. Moreover, not all BRCA1 mutations/loss of function result in the same histology/pathology or indeed have similar effects in modulating therapeutic responses. Given the poor clinical outcomes and lack of targeted therapy for these subtypes, a better understanding of the biology underlying these diseases is required in order to develop novel therapeutic strategies.We have discovered a consistent NFκB hyperactivity associated with BRCA1 dysfunction as a consequence of increased Reactive Oxygen Species (ROS). This biology is found in a subset of BRCA1-mutant and triple negative breast cancer cases and confers good outcome. The increased NFκB signalling results in an anti-tumour microenvironment which may allow CD8+ cytotoxic T cells to suppress tumour progression. However, tumours lacking this NFκB-driven biology have a more tumour-promoting environment and so are associated with poorer prognosis. Tumour-derived gene expression data and cell line models imply that these tumours may benefit from alternative treatment strategies such as reprogramming the microenvironment and targeting the IGF and AR signalling pathways.
Resumo:
The Colorectal Cancer (CRC) Subtyping Consortium (CRCSC) recently published four consensus molecular subtypes (CMS’s) representing the underlying biology in CRC. The Microsatellite Instable (MSI) immune group, CMS1, has a favorable prognosis in early stage disease, but paradoxically has the worst prognosis following relapse, suggesting the presence of factors enabling neoplastic cells to circumvent this immune response. To identify the genes influencing subsequent poor prognosis in CMS1, we analyzed this subtype, centered on risk of relapse.
In a cohort of early stage colon cancer (n=460), we examined, in silico, changes in gene expression within the CMS1 subtype and demonstrated for the first time the favorable prognostic value of chemokine-like factor (CKLF) gene expression in the adjuvant disease setting [HR=0.18, CI=0.04-0.89]. In addition, using transcription profiles originating from cell sorted CRC tumors, we delineated the source of CKLF transcription within the colorectal tumor microenvironment to the leukocyte component of these tumors. Further to this, we confirmed that CKLF gene expression is confined to distinct immune subsets in whole blood samples and primary cell lines, highlighting CKLF as a potential immune cell-derived factor promoting tumor immune-surveillance of nascent neoplastic cells, particularly in CMS1 tumors. Building on the recently reported CRCSC data, we provide compelling evidence that leukocyte-infiltrate derived CKLF expression is a candidate biomarker of favorable prognosis, specifically in MSI-immune stage II/III disease.