164 resultados para IL-16


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harnessing outgrowth endothelial cells (OECs) for vasoreparative therapy and tissue-engineering requires efficient ex-vivo expansion. How such expansion impacts on OEC function is largely unknown. In this study, we show that OECs become permanently cell-cycle arrested after ex-vivo expansion, which is associated with enlarged cell size, ß-galactosidase activity, DNA damage, tumour suppressor pathway activation and significant transcriptome changes. These senescence hallmarks were coupled with low telomerase activity and telomere shortening, indicating replicative senescence. OEC senescence limited their regenerative potential by impairing vasoreparative properties in-vitro and in-vivo. Integrated transcriptome-proteome analysis identified inflammatory signalling pathways as major mechanistic components of the OEC senescence programme. In particular, IL8 was an important facilitator of this senescence; depletion of IL8 in OECs significantly extended ex-vivo lifespan, delayed replicative senescence and enhanced function. While the ability to expand OEC numbers prior to autologous or allogeneic therapy remains a useful property, their replicative senescence and associated impairment of vasorepair needs to be considered. The current study also suggests that modulation of the senescence-associated secretory phenotype (SASP) could be used to optimise OEC therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a chronic inflammatory disease characterised by airways remodelling. In mouse models IL-9 and IL-13 have been implicated in airways remodelling including mucus hypersecretion and goblet cell hyperplasia. Their role, especially that of IL-9, has been much less studied in authentic human ex vivo models of the bronchial epithelium from normal and asthmatic children. We assessed the effects of IL-9, IL-13 and an IL-9/IL-13 combination, during differentiation of bronchial epithelial cells from normal (n?=?6) and asthmatic (n?=?8) children. Cultures were analysed for morphological markers and factors associated with altered differentiation (MUC5AC, SPDEF and MMP-7). IL-9, IL-9/IL-13 combination and IL-13 stimulated bronchial epithelial cells from normal children had fewer ciliated cells [14.8% (SD 8.9), p?=?0.048, 12.4 (SD 6.1), p?=?0.016 and 7.3% (SD 6.6), p?=?0.031] respectively compared with unstimulated [(21.4% (SD 9.6)]. IL-9 stimulation had no effect on goblet cell number in either group whereas IL-9/IL-13 combination and IL-13 significantly increased goblet cell number [24.8% (SD 8.8), p?=?0.02), 32.9% (SD 8.6), p?=?0.007] compared with unstimulated normal bronchial cells [(18.6% (SD 6.2)]. All stimulations increased MUC5AC mRNA in bronchial epithelial cells from normal children and increased MUC5AC mucin secretion. MMP-7 localisation was dysregulated in normal bronchial epithelium stimulated with Th2 cytokines which resembled the unstimulated bronchial epithelium of asthmatic children. All stimulations resulted in a significant reduction in transepithelial electrical resistance values over time suggesting a role in altered tight junction formation. We conclude that IL-9 does not increase goblet cell numbers in bronchial epithelial cell cultures from normal or asthmatic children. IL-9 and IL-13 alone and in combination, reduce ciliated cell numbers and transepithelial electrical resistance during differentiation of normal epithelium, which clinically could inhibit mucociliary clearance and drive an altered repair mechanism. This suggests an alternative role for IL-9 in airways remodelling and reaffirms IL-9 as a potential therapeutic target.© 2013 Parker et al.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2009-10 Perugia – provision of material and data for gallery and information panels in Perugia Museo dei Provincia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelia play important immunological roles at a variety of mucosal sites. We examined NFkappaB activity in control and TNF-alpha treated bovine mammary epithelial monolayers (BME-UV cells). A region of the bovine IL-8 (bIL-8) promoter was sequenced and a putative kappaB consensus sequence was identified bioinformatically. We used this sequence to analyse nuclear extracts for IL-8 specific NFkappaB activity. As a surrogate marker of NFkappaB activation, we investigated IL-8 release in two models. Firstly in BME-UV monolayers, IL-8 release in the presence of pro- and anti-inflammatory agents was determined by enzyme-linked immunosorbent assay (ELISA). Secondly, we measured IL-8 secretion from a novel model of intact mucosal sheets of bovine teat sinus. IL-8 release into bathing solutions was assessed following treatment with pro- and anti-inflammatory agents. TNF-alpha enhanced NFkappaB activity in bovine mammary epithelial monolayers. p65 NFkappaB homodimer was identified in both control and TNF-alpha treated cells. Novel sequencing of the bovine IL-8 promoter identified a putative kappaB consensus sequence, which specifically bound TNF-alpha inducible p50/p65 heterodimer. TNF-alpha induced primarily serosal IL-8 release in the cell culture model. Pre-treatment with anti-TNF or dexamethasone inhibited TNF-alpha induced IL-8 release. High dose interleukin-1beta (IL-1beta) induced IL-8 release, however significantly less potently than TNF-alpha. Bovine mammary mucosal tissue released high basal levels of IL-8 which were unaffected by TNF-alpha or IL-1beta but inhibited by both dexamethasone and anti-TNF. These data support a role for TNF-alpha in activation of NFkappaB and release of IL-8 from bovine mammary epithelial cells.