149 resultados para Groundwater Nitrate isotopes Nitrification Denitrification
Resumo:
Comparison of flow duration curves for a weir draining an undrained raised peat with those generated 20 years previously reveal that more recent curves reflect to be flatter with a lower Q95/Q5 ratio. Comparison of the bog topography for the same period revealed that although marginal drainage/peat reclamation had resulted in desiccation of peat around the bog margin and more frequent intense runoff, the central part of the bog had subsided to form an enclosed basin ,resulting in the creation of newly formed lakes that gave the central part of the bog an improved capacity to store, and more slowly discharge, water. Interrogation of groundwater monitoring data revealed a net decline in groundwater levels of up to three metres in the glacial tills underlying the bog associated with deepening and expansion of a marginal drain network which penetrated the base of the peat. Comparing organic carbon levels in peat the central part of the bog over a ten year period revealed an overall increase, with changes being most marked in deeper fen peat layers. These findings suggest that the decline in groundwater levels in the peat substrate resulted in an increase in effective stress in the peat causing greater subsidence in the central part of the bog due to greater overall thickness. Study results highlight how the hydrology of apparently isolated obotrophic raised bog ecosystems may be influenced by groundwater pressures in deeper deposits, and how marginal drains may have the capacity to impact areas at significant distances.
Resumo:
High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.
Resumo:
Lead isotope ratios ((206)Pb/(207)Pb and (208)Pb/(207)Pb) and concentrations in the livers and bones of marbled teal and white-headed duck found dead or moribund were determined in order to establish the main lead source in these waterfowl species. Lead concentrations in bone (dry weight) and liver (wet weight) were found to be very high in many of the white-headed ducks (bone: geometric mean=88.9 ppm, maximum=419 ppm; liver: geometric mean=16.8 ppm, maximum=57.0 ppm). Some of the marbled teal had high lead levels in the bones but liver lead levels were all low (bone: geometric mean=6.13 ppm, maximum=112 ppm; liver: geometric mean=0.581 ppm, maximum=4.77 ppm). Ingested lead shot were found in 71% of the white-headed duck and 20% of the marbled teal. The (206)Pb/(207)Pb ratio in livers and bones of white-headed ducks and marbled teals showed no significant differences compared to the ratios obtained from lead shot. The (206)Pb/(207)Pb ratio in bones of marbled teal ducklings with the highest lead concentrations tended to resemble the ratios of lead shot, which supports our hypothesis that the lead was derived from the hens. We also found that the lead ratios of lead shot and lead ratios described for soils in the area overlapped, but also that the isotopic ratio (206)Pb/(207)Pb in lead shot used in Spain has a narrow range compared with those used in North America. The principal source of lead in many of these birds was, however, most likely lead shot, as supported by the similar isotopic ratios, high lead concentrations in tissues and evidence of ingested shot.
Resumo:
A bacterial bioassay, suitable for rapid screening to assess the relative toxicity of xenobiotic contaminated groundwater has been developed. The quantitative bioassay utilizes a decline in luminescence of the lux marked soil bacterium Pseudomonas fluorescens on exposure to contaminated groundwaters from which effective concentration (EC) values can be assessed and compared. P. fluorescens was most sensitive to semi-volatile organics in groundwaters but there was no correlation between EC value and chemical content. The sensitivity and reproducibility of the P. fluorescens bioassay was compared with that of Microtox and results showed that mean EC50 values for diluted ground water replicate samples were 20% and 18% respectively. This suggested that the P. fluorescens bioassay was as applicable to groundwater screening as the widely used Microtox bioassay.
Resumo:
The synthesis of two new tripodal complexes [Ru(L3)](PF6)2 and [Ru(L4)](PF6)2, encapsulating a ruthenium(II) cation has been successfully achieved and the products fully characterized, including by X-ray structural determination. The smaller cavity, built around a tris(2-aminoethyl)amido scaffold demonstrated only moderate and predictable interactions with a range of anions and no significant spectroscopic change with nitrate, chloride and bromide, although dihydrogen phosphate did result in an almost stoichiometric precipitation. The expansion of the cavity to include the more rigid 1,3,5-benzenetricarbonylamide group creates a larger cavity, which shows a decrease in the emission on the introduction of chloride, bromide, hydrogensulfate and nitrate salts, with the 1H NMR titrations giving a surprisingly high binding affinity for nitrate over the smaller and simpler halides.
Resumo:
Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.
Resumo:
The long-term climatic and environmental history of Southeast Asia, and of Thailand in particular, is still fragmentary. Here we present a new 14C-dated, multi-proxy sediment record (TOC, C/N, CNS isotopes, Si, Zr, K, Ti, Rb, Ca elemental data, biogenic silica) for Lake Kumphawapi, the second largest natural lake in northeast Thailand. The data set provides a reconstruction of changes in lake status, groundwater fluctuations, and catchment run-off during the Holocene. A comparison of multiple sediment sequences and their proxies suggests that the summer monsoon was stronger between c. 9800 and 7000 cal yr BP. Lake status and water level changes around 7000 cal yr BP signify a shift to lower effective moisture. By c. 6500 cal yr BP parts of the lake had been transformed into a peatland, while areas of shallow water still occupied the deeper part of the basin until c. 5400–5200 cal yr BP. The driest interval in Kumphawapi's history occurred between c. 5200 and 3200 cal yr BP, when peat extended over large parts of the basin. After 3200 cal yr BP, the deepest part of the lake again turned into a wetland, which existed until c. 1600 cal yr BP. The observed lake-level rise after 1600 cal yr BP could have been caused by higher moisture availability, although increased human influence in the catchment cannot be ruled out. The present study highlights the use of multiple sediment sequences and proxies to study large lakes, such as Lake Kumphawapi in order to correctly assess the time transgressive response to past changes in hydroclimate conditions. Our new data set from northeast Thailand adds important palaeoclimatic information for a region in Southeast Asia and allows discussing Holocene monsoon variability and ITCZ movement in greater detail.
Resumo:
Arsenic (As) contamination of communal tubewells in Prey Vêng, Cambodia, has been observed since 2000. Many of these wells exceed the WHO As in drinking water standard of 10 µg/L by a factor of 100. The aim of this study was to assess how cooking water source impacts dietary As intake in a rural community in Prey Vêng. This aim was fulfilled by (1) using geostatistical analysis techniques to examine the extent of As contaminated groundwater in Prey Vêng and identify a suitable study site, (2) conducting an on-site study in two villages to measure As content in cooked rice prepared with water collected from tubewells and locally harvested rainwater, and (3) determining the dietary intake of As from consuming this rice. Geostatistical analysis indicated that high risk tubewells (>50 µg As/L) are concentrated along the Mekong River's east bank. Participants using high risk tubewells are consuming up to 24 times more inorganic As daily than recommended by the previous FAO/WHO provisional tolerable daily intake value (2.1 µg/kgBW/day). However, As content in rice cooked in rainwater was significantly reduced, therefore, it is considered to be a safer and more sustainable option for this region.
Resumo:
At the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site, the iron content of shallow subsurface materials (i.e. weathered saprolite) is relatively high (up to 5-6% as w/w), and therefore, the forms of the iron species present plays a critical role in the long-term sequestration of uranium. A long term pilot-scale study of the bioreduction and reoxidation of uranium conducted at the ORIFRC area 3 site, adjacent to the former S-3 disposal ponds (source zone), has provided us with the opportunity to study the impact of iron species on the sequestration of U(VI). The aqueous U(VI) concentrations at the site were decreased to below the EPA MCL through the intermittent injection of ethanol as the electron donor. Previous field tests indicated that both oxygen and nitrate could oxidize the bioreduced U(IV) and cause a short-term rebound of aqueous phase uranium concentration after the oxidative agents were delivered directly to the bioreduced zone.
A field test has been conducted to examine the long-term effect of exposure of bioreduced sediments to nitrate in contaminated groundwater for more than 1,380 days at the Area 3 site. Contaminated groundwater was allowed to invade the previously bioreduced zone via the natural groundwater gradient after an extended period in which reducing conditions were maintained and the bioreduced zone was protected from the influx of upgradient contaminated groundwater. The geochemical response to the invasion of contaminated groundwater was dependent on whether the monitoring location is in the middle or the fringe of the previously bioreduced zone. In general, the nitrate concentrations in the previously bioreduced area, increased gradually from near zero to ~50-300 mM within 200 days and then stabilized. The pH declined from bioreduced levels of 6.2-6.7 to below 5.0. Uranium concentrations rebounded in all monitoring wells but at different rates. At most locations U concentrations rebounded, declined and then rebounded again. Methane gas disappeared while a significant level (20,000 to 44,000 ppmv) N2O was found in the groundwater of monitoring wells after three years of reoxidization.
The U(IV) in sediments was mainly reoxidized to U(VI) species. Based on XANES analysis, the predominate uranium in all samples after re-oxidation was similar to a uranyl nitrate form. But the U content in the sediment remained as high as that determined after bioreduction activates were completed, indicating that much of the U is still sequestrated in situ. SEM observations of surged fine sediments revealed that clusters of colloidal-sized (200-500nm) U-containing precipitates appeared to have formed in situ, regardless from sample of FW106 in non-bioactivity control area or of pre-bioreduced FW101-2 and FW102-3. Additionally, SEM-EDS and microprobe analysis, showed that the U-containing precipitates (~1% U) in FW106 are notably higher in Fe, compared to the precipitates (~1-2.5% U) from FW101-2 and FW102-3. However, XRF analysis indicated that the U content was remained as high as 2180 and 1810 mg/kg with U/Fe ratio at 0.077 and 0.055 vs 0.037 g/g, respectively in pre-bioreduced FW101-2 and FW102-3, suggesting more U sequestrated by Fe in pre-bioreduced sediments.
Resumo:
The marine topshell, Phorcus (Osilinus) turbinatus, is a common component of many archaeological sites in the Mediterranean. This species has been successfully used as a palaeoclimate proxy in Italy. To test whether d18O from P. turbinatus shells can serve as a reliable palaeoclimate archive for other regions of the Mediterranean, we collected live P. turbinatus from the northeast coast of Malta each month for a year. The d18OSHELL values of the outermost growth increments of these live-collected shells ranged between-0.4 and+2.4‰. These values correspond to growing temperatures calculated from shell edge d18O of between 15 °C and 27 °C. Calculated shell edge sea surface temperatures are highly correlated with instrumental records of sea surface temperature recorded over the period of collection. The individuals analysed for this study are smaller than P. turbinatus from populations studied elsewhere in the Mediterranean. Nonetheless, d18OSHELL provides a robust record of sea surface temperatures, suggesting that smaller/younger shells in archaeological deposits can still provide reliable palaeothermometry records. This study extends the upper growth limit P. turbinatus by 2 °C compared with the previous studies of P. turbinatus in the Mediterranean and suggests that, contrary to the previous studies, growth shutdown does not occur in all P. turbinatus when sea surface temperatures exceed 25 °C. This may reflect the higher sample resolution that can be obtained from smaller/faster growing shells, or it may reflect actual higher growth tolerances of P. turbinatus populations in Malta. By showing that P. turbinatus precipitate their shells in d18O equilibrium with surrounding sea water, this study reinforces the potential for the stable isotope chemistry of P. turbinatus shells preserved in Mediterranean archaeological sites to provide a window into the climate and seasonality regimes of the past.
Resumo:
In the preparation of silica-supported nickel oxide from nickel nitrate impregnation and drying, the replacement of the traditional air calcination step by a thermal treatment in 1% NO/Ar prevents agglomeration, resulting in highly dispersed NiO. The mechanism by which NO prevents agglomeration was investigated by using combined in situ diffuse reflectance infrared fourier transform (DRIFT) spectroscopy and mass spectrometry (MS). After impregnation and drying, a supported nickel hydroxynitrate phase with composition Ni(3)(NO(3))(2)(OH)(4) had been formed. Comparison of the evolution of the decomposition gases during the thermal decomposition of Ni(3)(NO(3))(2)(OH)(4) in labeled and unlabeled NO and O(2) revealed that NO scavenges oxygen radicals, forming NO(2). The DRIFT spectra revealed that the surface speciation evolved differently in the presence of NO as compared with in O(2) or Ar. It is proposed that oxygen scavenging by NO depletes the Ni(3)(NO(3))(2)(OH)(4) phase of nitrate groups, creating nucleation sites for the formation of NiO, which leads to very small (similar to 4 nm) NiO particles and prevents agglomeration.