118 resultados para Geometric mean radius
Resumo:
Objective:
The aim of this study was to identify sources of anatomical misrepresentation due to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimise the 4DCT scan protocol and improve geometrical-temporal accuracy.
Methods:A phantom with an imaging insert was driven with a sinusoidal superior-inferior motion of varying amplitude and period for 4DCT scanning. The length of a high density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested.
Results:No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall mounted or couch mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5s rather than 1.0s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose.
Conclusions:4DCT accuracy may be increased by optimising scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace leads to spatial artefacts and this risk can be reduced by using a couch mounted infrared camera.
Advances in knowledge:This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed.
Resumo:
A tridimensional model of α-Fe2O3 and models of (0001) and (1102) surfaces on it were built. Then the structural optimization of the (0001) surface was presented which explored the influence of the system scale and the terminal surface configuration. Four different models including two different system scale structures (MODEL□ and MODEL□) and two different terminal structures (MODEL□ and MODEL□) were analyzed in this paper. It was concluded that the boundary effect was more important in a smaller system in the structure optimization. And the Fe-terminated was more stable than the O-terminated structure which was agreed with the experiences, this structural model can be used in further work including the monatomic adsorption/desorption and the chemical reactions on this surface.
Resumo:
Purpose. To investigate the robustness of single vocal cord intensity modulated radiation therapy (IMRT) treatment plans for set-up errors, respiration, and deformation. Material and methods. Four-dimensional computed tomography (4D-CT) scans of 10 early glottic carcinoma patients, previously treated with conventional techniques, were used in this simulation study. For each patient a pre-treatment 4D-CT was used for IMRT planning, generating a reference dose distribution. Prescribed PTV dose was 66 Gy. The impact of systematic set-up errors was simulated by applying shifts of ± 2 mm to the planning CT scans, followed by dose re-calculation with original beam segments, MUs, etc. Effects of respiration and deformation were determined utilizing extreme inhale and exhale CT scans, and repeat scans acquired after 22 Gy, 44 Gy, and 66 Gy, respectively. All doses were calculated using Monte Carlo dose simulations. Results. Considering all investigated geometrical perturbations, reductions in the clinical target volume (CTV) V95%, D98%, D2%, and generalized equivalent uniform dose (gEUD) were limited to 1.2 ± 2.2%, 2.4 ± 2.9%, 0.2 ± 1.8%, and 0.6 ± 1.1 Gy, respectively. The near minimum dose, D98%, was always higher than 89%, and gEUD always remained higher than 66 Gy. Planned contra-lateral (CL) vocal cord DMean, gEUD, and V40 Gy were 38.2 ± 6.0 Gy, 43.4 ± 5.6 Gy, and 42.7 ± 14.9%. With perturbations these values changed by -0.1 ± 4.3 Gy, 0.1 ± 4.0 Gy, and -1.0 ± 9.6%, respectively. Conclusions. On average, CTV dose reductions due to geometrical perturbations were very low, and sparing of the CL vocal cord was maintained. In a few observations (6 of 103 simulated situations), the near-minimum CTV-dose was around 90%, requiring attention in deciding on a future clinical protocol.
Resumo:
We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggestingthat its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling resultsshowing that the dust emission persists over at least three months during both active periods, where we find start dates for emission nolater than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to aneffective nucleus radius of re ∼ 1.00 ± 0.15 km.The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be consideredan upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and beinglocated near two three-body mean-motion resonances with Jupiter andSaturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong tothe ∼155 Myr old Lixiaohua asteroid family.
Resumo:
We present new results from SEPPCoN, a Survey of Ensemble Physical Properties of Cometary Nuclei. This project is currently surveying 100 Jupiter-family comets (JFCs) to measure the mid-infrared thermal emission and visible reflected sunlight of the nuclei. The scientific goal is to determine the distributions of radius, geometric albedo, thermal inertia, axial ratio, and color among the JFC nuclei. In the past we have presented results from the completed mid-IR observations of our sample [1]; here we present preliminary results from ongoing, broadband visible-wavelength observations of nuclei obtained from a variety of ground-based facilities (Mauna Kea, Cerro Pachon, La Silla, La Palma, Apache Point, Table Mtn., and Palomar Mtn.), including contributions from the Near Earth Asteroid Telescope project (NEAT) archive. The nuclei were observed at high heliocentric distance (usually over 4 AU) and so many comets show either no or little contamination from dust coma. While several nuclei have been observed as snapshots, we have multiepoch photometry for many of our targets. With our datasets we are building a large database of photometry, and such a database is essential to the derivation of albedo and shape of a large number of nuclei, and to the understanding of biases in the survey. Support for this work was provided by NSF and the NASA Planetary Astronomy program. Reference: [1] Fernandez, Y.R., et al. 2007, BAAS 39, 827.
Resumo:
Dependency on thermal generation and continued wind power growth in Europe due to renewable energy and greenhouse gas emissions targets has resulted in an interesting set of challenges for power systems. The variability of wind power impacts dispatch and balancing by grid operators, power plant operations by generating companies and market wholesale costs. This paper quantifies the effects of high wind power penetration on power systems with a dependency on gas generation using a realistic unit commitment and economic dispatch model. The test system is analyzed under two scenarios, with and without wind, over one year. The key finding of this preliminary study is that despite increased ramping requirements in the wind scenario, the unit cost of electricity due to sub-optimal operation of gas generators does not show substantial deviation from the no wind scenario.
Resumo:
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Resumo:
The hot-JupiterWASP-10bwas reported by Maciejewski et al. to showtransit timing variations (TTVs) with an amplitude of ~3.5 min. These authors proposed that the observed TTVs were caused by a 0.1MJup perturbing companion with an orbital period of ~5.23 d, and hence, close to the outer 5:3 mean-motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov Chain Monte Carlo transit fitting code. Transit depth differences reported forWASP-10b are thought to be due to starspot-induced brightness modulation of the host star. Assuming the star is brighter at the activity minimum, we favour a small planetary radius. We find Rp = 1.039+0.043 -0.049RJup in agreement with Johnson et al. and Maciejewski et al. Recent studies find no evidence for a significant eccentricity in this system. We present consistent system parameters for a circular orbit and refine the orbital ephemeris ofWASP-10b. Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on two previously published transits that have been incorrectly normalized. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10b are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample.
Resumo:
PURPOSE: Primary angle-closure glaucoma (PACG) is more prevalent among Chinese than whites. The authors tested the hypothesis that Chinese have shallower anterior chambers than do whites, a factor that may be related to PACG prevalence. METHODS: The authors compared anterior chamber depth, axial length, radius of corneal curvature, and refractive error among 531 Chinese, 170 whites, and 188 blacks older than 40 years of age using the same model of instruments and identical technique. RESULTS: Mean anterior chamber depth and axial length did not differ significantly for the three groups. Whites had a significantly higher prevalence of hyperopia > 2 diopters than did Chinese. Radius of corneal curvature was significantly smaller among Chinese than whites or blacks. CONCLUSIONS: These results suggest that Chinese do not differ on a population basis from other ethnic groups in many of the biometric risk factors known to be of importance for PACG. It will be necessary to identify other ocular biometric parameters to explain the excess burden of PACG among Chinese, which may improve the effectiveness of screening for this disease in all populations.
Resumo:
PURPOSE: Recent studies report that increased corneal edema because of contact lens wear under closed lids is associated with elevated Goldmann intraocular pressure (GAT IOP). We sought to assess whether the impact of postoperative corneal edema on GAT IOP would be similar and to determine the differential effect of different amounts of edema. METHODS: The setting is a tertiary level cataract clinic in Shantou, China. Pre- and postoperative (day 1) GAT IOP, central corneal thickness (CCT), corneal hysteresis, corneal resistance factor, and radius of corneal curvature were measured for consecutive patients undergoing phacoemulsification surgery by 2 experienced surgeons. Corneal edema was calculated as the percentage increase in CCT. RESULTS: Among 136 subjects (mean age, 62.5 ± 15.4 years; 53.7% women), the mean increase in CCT was 10.3% postoperatively. Greater corneal edema was associated with lower GAT IOP in unadjusted analyses (P < 0.03) and in linear regression models (P < 0.01). In the model, higher corneal resistance factor (P < 0.001), lower corneal hysteresis (P < 0.001), and steeper radius of corneal curvature (P < 0.001) were associated with higher GAT IOP. Among subjects with edema < the median, edema was associated with lower GAT IOP (P = 0.004), whereas among those with edema ≥ the median, edema was not associated with GAT IOP. An increase in CCT of 7% was associated with an 8 mm Hg underestimation of GAT IOP in our models. CONCLUSIONS: The effect of postoperative edema on GAT IOP seems to be the opposite of contact lens-induced edema. The magnitude of the effect is potentially relevant to patient management.
Resumo:
PURPOSE: To describe the distribution of central corneal thickness (CCT), intraocular pressure (IOP), and their determinants and association with glaucoma in Chinese adults.DESIGN: Population-based cross-sectional study.METHODS: Chinese adults aged 50 years and older were identified using cluster random sampling in Liwan District, Guangzhou. CCT (both optical [OCCT] and ultrasound [UCCT]), intraocular pressure (by Tonopen, IOP), refractive error (by autorefractor, RE), radius of corneal curvature (RCC), axial length (AL), and body mass index (BMI) were measured, and history of hypertension and diabetes (DM) was collected by questionnaire. Right eye data were analyzed.RESULTS: The mean values of OCCT, UCCT, and IOP were 512 ± 29.0 μm, 542 ± 31.4 μm, and 15.2 ± 3.1 mm Hg, respectively. In multiple regression models, CCT declined with age (P < .001) and increased with greater RCC (P < .001) and DM (P = .037). IOP was positively associated with greater CCT (P < .001), BMI (P < .001), and hypertension (P < .001). All 25 persons with open-angle glaucoma had IOP <21 mm Hg. CCT did not differ significantly between persons with and without open- or closed-angle glaucoma. Among 65 persons with ocular hypertension (IOP >97.5th percentile), CCT (555 ± 29 μm) was significantly (P = .01) higher than for normal persons.CONCLUSIONS: The distributions of CCT and IOP in this study are similar to that for other Chinese populations, though IOP was lower than for European populations, possibly due to lower BMI and blood pressure. Glaucoma with IOP <21 mm Hg is common in this population. We found no association between glaucoma and CCT, though power (0.3) for this analysis was low.
Resumo:
What is meant by the term random? Do we understand how to identify which type of randomisation to use in our future research projects? We, as researchers, often explain randomisation to potential research participants as being a 50/50 chance of selection to either an intervention or control group, akin to drawing numbers out of a hat. Is this an accurate explanation? And are all methods of randomisation equal? This paper aims to guide the researcher through the different techniques used to randomise participants with examples of how they can be used in educational research.