115 resultados para Galactic Cannibalism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present our findings on a supernova (SN) impostor, SNHunt248, based on optical and near-IR data spanning ~15 yr before discovery, to ~1 yr post-discovery. The light curve displays three distinct peaks, the brightest of which is at MR ~ −15.0 mag. The post-discovery evolution is consistent with the ejecta from the outburst interacting with two distinct regions of circumstellar material. The 0.5–2.2 μm spectral energy distribution at −740 d is well-matched by a single 6700 K blackbody with log (L/L⊙) ~ 6.1. This temperature and luminosity support previous suggestions of a yellow hypergiant progenitor; however, we find it to be brighter than the brightest and most massive Galactic late-F to early-G spectral type hypergiants. Overall the historical light curve displays variability of up to ~ ± 1 mag. At current epochs (~1 yr post-outburst), the absolute magnitude (MR ~ − 9 mag) is just below the faintest observed historical absolute magnitude ~10 yr before discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of inter cohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects”design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoca analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a hetero specific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ∼1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems. 

Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants. 

Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the Nii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results. We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ νe sin i ≤ 60 km s-1. About ten per cent have larger ve sin i (≥100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ≤70 km s-1 and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history. 

Conclusions: The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the "Si ii disaster," and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity () may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.