215 resultados para GHZ
Resumo:
An analytical approach for CMOS parameter extraction which includes the effect of parasitic resistance is presented. The method is based on small-signal equivalent circuit valid in all region of operation to uniquely extract extrinsic resistances, which can be used to extend the industry standard BSIM3v3 MOSFET model for radio frequency applications. The verification of the model was carried out through frequency domain measurements of S-parameters and direct time domain measurement at 2.4 GHz in a large signal non-linear mode of operation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper explores the potential of germanium on sapphire (GeOS) wafers as a universal substrate for System on a Chip (SOC), mm wave integrated circuits (MMICs) and optical imagers. Ge has a lattice constant close to that of GaAs enabling epitaxial growth. Ge, GaAs and sapphire have relatively close temperature coefficients of expansion (TCE), enabling them to be combined without stress problems. Sapphire is transparent over the range 0.17 to 5.5 µm and has a very low loss tangent (a) for frequencies up to 72 GHz. Ge bonding to sapphire substrates has been investigated with regard to micro-voids and electrical quality of the Ge back interface. The advantages of a sapphire substrate for integrated inductors, coplanar waveguides and crosstalk suppression are also highlighted. MOS transistors have been fabricated on GeOS substrates, produced by the Smart-cut process, to illustrate the compatibility of the substrate with device processing. © 2008 World Scientific Publishing Company.
Resumo:
This paper reports the design, construction and electromagnetic performance of a new freestanding frequency selective surface (FSS) structure which generates coincident spectral responses for dual polarisation excitation at oblique angles of incidence. The FSS is required to allow transmission of 316.5 - 325.5 GHz radiation with a loss = 0.6 dB and to achieve = 30 dB rejection from 349.5 - 358.5 GHz. It should also exhibit crosspolarisation levels below -25 dB, all criteria being satisfied simultaneously for TE and TM polarisations at 45° incidence. The filter consists of two identical, 30 mm diameter, 12.5 ?m thick, optically flat, perforated metal screens separated by 450 ?m. Each of the ˜5000 unit cells contains two nested, short circuited, rectangular loop slots and a rectangular dipole slot. The nested elements provide a passband spectral response centred at 320 GHz in the TE and TM planes; the dipole slot increases the filter roll-off above resonance. The FSS was fabricated from silicon-on-insulator wafers using precision micromachining and plating processes including the use of Deep Reactive Ion Etching (DRIE) to pattern the individual slots and remove the substrate under the periodic arrays. Quasi–optical transmission measurements in the 250 – 360 GHz range yielded virtually identical copolarised spectral responses, with the performance meeting or exceeding the above specifications. Experimental results are in excellent agreement with numerical predictions.
Resumo:
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.
Resumo:
A simple and original mechanism to control the polarisation of uniform hybrid waveguide-planar leaky-wave antennas is proposed. The operation is based on introducing simple modifications of the planar dimensions of the structure cross-section, which is shown to control the horizontal and vertical components of the radiated fields. The proposed antenna dispenses with the need for periodic elements, commonly used in flexible polarised leaky-wave antennas, and therefore significantly reduces the design complexity. Parametric curves have been obtained to assist in the simple and efficient design of the proposed antenna. The novel mechanism is illustrated by means of several antenna prototypes operating at 5.7 GHz, producing linear, elliptical and circular polarisations. Commercial three-dimensional Finite Element Method has been used for the simulations, and the results are validated with experimental testing.[br].
Resumo:
In this paper novel 3D periodic multilayer structures are investigated in MIC technology, and a periodically loaded multilayer waveguide resonant structure is proposed. This is a very compact structure and still maintains simple fabrication process. The resonator is designed at 10 and 28 GHz. The simulated results of this resonator, which is obtained from commercial FEM software package HFSS, are confirmed by experimental results. The experiments are based oil the same resonator structure, only at 10 GHz. By modifying the conventional waveguide resonator, with the proposed structure, a minimum 30% shorter resonator can be achieved, which is very important at filter applications. (C) 2002 Wiley Periodicals, Inc.
Resumo:
In this article, we present the theory and a design methodology for a unable Quasi-Lumped Quadrature Coupler (QLQC). Because of its topology, the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry. No additional capacitors or inductors are required. A prototype at 3.5 GHz is etched on a 0.130-mm-thick layer substrate with a dielectric material of relative permittivity of 2.22. The simulated and measured scattering parameters are, presented. (c) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2219-2222 2009: Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24526
Resumo:
A system capable of deployment as a microwave security sensor which can automatically reject background clutter is presented. The principle of operation is based on analog homodyne detection using 1. Q single side-band down conversion of an AM backscattered modulating signal envelope. A demonstrator is presented which operates with a carrier frequency of 2 GHz and 500 KHz backscattered signal. When deployed in a multipath rich open plan office environment the S/N ratio obtained at the detection output was better than 20 dB at 20 in range with 20 dBm EIRP in a 2 MHz detection bandwidth despite the presence of time varying and static clutter. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2492-2495, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24636
Resumo:
In this letter, we show how a 2.4-GHz retrodirective array operating in a multipath rich environment can be utilized in order to spatially encrypt digital data. For the first time, we give experimental evidence that digital data that has no mathematical encryption applied to it can be successfully recovered only when it is detected with a receiver that is polarization-matched to that of a reference continuous-wave (CW) pilot tone signal. In addition, we show that successful detection with low bit error rate (BER) will only occur within a highly constrained spatial region colocated close to the position of the CW reference signal. These effects mean that the signal cannot be intercepted and its modulated data recovered at locations other than the constrained spatial region around the position from which the retrodirective communication was initiated.
Resumo:
A simple method for the selection of the appropriate choice of surface-mounted loading resistor required for a thin radar absorber based on a high-impedance surface (HIS) principle is demonstrated. The absorber consists of a HIS, (artificial magnetic ground plane), thickness 0.03 lambda(0) surface-loaded resistive-elements interconnecting a textured surface of square patches. The properties of absorber are characterized under normal incident using a parallel plate waveguide measurement technique over the operating frequency range of 2.6-3.95 GHz. We show that for this arrangement return loss and bandwidth are insensitive to +/- 2% tolerance variations in surface resistor values about the value predicted using the method elaborated in this letter, and that better than -28 dB at 3.125 GHz reflection loss can be obtained with an effective working bandwidth of up to 11% at -10 dB reflection loss. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1733-1775, 2009; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mop.24454
Resumo:
A method for producing a retrodirective (self-tracking) antenna, which can also be operated as a phased (selectively pointed) array through the addition of a simple switching circuit and DC bias offset adjustment, is presented. Phase adjustment to individual antenna elements is shown to be readily carried out by a simple frequency pushing technique, applied to a PLL circuit, thus replacing the requirement for additional phase shifters. Practical results when applied to a ten-element array operating at 2.4 GHz are shown for both modes of operation.
Resumo:
A power combining strategy for Class-E and inverse Class-E amplifiers operating at high frequencies such that they can operate into unbalanced loads is proposed. This power combining method is particularly important for the inverse Class-E amplifier configuration whose single-stage topology is naturally limited for small-to-medium power applications. Design examples for the power combining synthesis of classical Class-E and then inverse Class-E amplifiers with specification 3 V-1.5 W-2.5 GHz are given. For this specification, it is shown that a three-branch combiner has a natural 50 V output impedance. The resulting circuits are simulated within Agilent Advanced Design Systems environment with good agreement to theoretical prediction. Further the performance of the proposed circuits when operated in a Linear amplification using Nonlinear Components transmitter configuration whereby two-branch amplifiers are driven with constant amplitude conjugate input phase signals is investigated.
Resumo:
An analysis of the operation of a series-L/parallel-tuned class-E amplifier and its equivalence to the classic shunt-C/series-tuned class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given. Furthermore, a design procedure is introduced that allows the effect that nonzero switch resistance has on amplifier performance efficiency to be accounted for. The technique developed allows optimal circuit components to be found for a given device series resistance. For a relatively high value of switching device ON series resistance of 4O, drain efficiency of around 66% for the series-L/parallel-tuned topology, and 73% for the shunt-C/series-tuned topology appear to be the theoretical limits. At lower switching device series resistance levels, the efficiency performance of each type are similar, but the series-L/parallel-tuned topology offers some advantages in terms of its potential for MMIC realisation. Theoretical analysis is confirmed by numerical simulation for a 500mW (27dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned class E power amplifier, operating at 2.5 GHz, and excellent agreement between theory and simulation results is achieved. The theoretical work presented in the paper should facilitate the design of high-efficiency switched amplifiers at frequencies commensurate with the needs of modern mobile wireless applications in the microwave frequency range, where intrinsically low-output-capacitance MMIC switching devices such as pHEMTs are to be used.
Resumo:
Mobile ad hoc networking of dismounted combat personnel is expected to play an important role in the future of network-centric operations. High-speed, short-range, soldier-to-soldier wireless communications will be required to relay information on situational awareness, tactical instructions, and covert surveillance related data during special operations reconnaissance and other missions. This article presents some of the work commissioned by the U. K. Ministry of Defence to assess the feasibility of using 60 GHz millimeter-wave smart antenna technology to provide covert communications capable of meeting these stringent networking needs. Recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed in millimeter-wave soldier-mounted radio, are discussed. The introduction of covert communications between soldiers will require the development of a bespoke directive medium access layer. A number of adjustments to the IEEE 802.11 distribution coordination function that will enable directional communications are suggested. The successful implementation of future smart antenna technologies and direction of arrival-based protocols will be highly dependent on thorough knowledge of transmission channel characteristics prior to deployment. A novel approach to simulating dynamic soldier-to-soldier signal propagation using state-of-the-art animation-based technology developed for computer game design is described, and important channel metrics such as root mean square angle and delay spread for a team of four networked infantry soldiers over a range of indoor and outdoor environments is reported.
Resumo:
The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.