140 resultados para Fuel switching
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 oC and 60 oC, using variable temperature electrochemical in-situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 oC to 60 oC facilitates both ethanol dissociation to CO(a) and their further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found on modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in-situ FTIR and DFT study, provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.
Resumo:
The 71 degrees stripe domain patterns of epitaxial BiFeO3 thin films are frequently being explored to achieve new functional properties, dissimilar from the BiFeO3 bulk properties. We show that in-plane switching and out-of-plane switching of these domains behave very differently. In the in-plane configuration the domains are very stable, whereas in the out-of-plane configuration the domains change their size and patterns, depending on the applied switching voltage frequency.
Resumo:
The performance of NOx storage and reduction over 1.5 wt% Pt/20 wt% KNO3/K2Ti8O17 and 1.5 wt% Pt/K2Ti8O17 catalysts has been investigated using combined fast transient kinetic switching and isotopically labelled (NO)-N-15 at 350 degrees C. The evolution of product N-2 has revealed two significant peaks during 60 s lean/1.3 s rich switches. It also found that the presence of CO2 in the feed affects the release of N-2 in the second peak. Regardless of the presence/absence of water in the feed, only one peak of N-2 was observed in the absence of CO2. Gas-phase NH3 was not observed in any of the experiments. However, in the presence of CO2 the results obtained from in situ DRIFTS-MS analysis showed that isocyanate species are formed and stored during the rich cycles, probably from the reaction between NOx and CO, in which CO was formed via the reverse water-gas shift reaction.
Alkali Activated Fuel Ash and Slag Mixes:Optimization Study from Mortars to Concrete Building Blocks
Resumo:
Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (PFA) from a UK power plant, ground granulated blast furnace slag (GGBS) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several PFA and GGBS combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of PFA/GGBS and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from PFA/GGBS combinations.
Resumo:
Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.
Resumo:
Using fMRI, we conducted two types of property generation task that involved language switching, with early bilingual speakers of Korean and Chinese. The first is a more conventional task in which a single language (L1 or L2) was used within each trial, but switched randomly from trial to trial. The other consists of a novel experimental design where language switching happens within each trial, alternating in the direction of the L1/L2 translation required. Our findings support a recently introduced cognitive model, the 'hodological' view of language switching proposed by Moritz-Gasser and Duffau. The nodes of a distributed neural network that this model proposes are consistent with the informative regions that we extracted in this study, using both GLM methods and Multivariate Pattern Analyses: the supplementary motor area, caudate, supramarginal gyrus and fusiform gyrus and other cortical areas.
Resumo:
A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.
Resumo:
Globally vehicle operators are experiencing rising fuel costs and increased
running expenses as governments around the world attempt to decrease carbon dioxide emissions and fossil fuel consumption, due to global warming and the drive to reduce dependency on fossil fuels. Recent advances in hybrid vehicle design have made great strides towards more efficient operation, with regenerative braking being widely used to capture otherwise lost energy. In this paper a hybrid series bus is developed a step further, by installing another method of energy capture on the vehicle. In this case, it is in the form of the Organic Rankine Cycle (ORC). The waste heat expelled to the exhaust and coolant streams is recovered and converted to electrical energy which is then stored in the hybrid vehicles batteries. The electrical energy can then be used for the auxiliary power circuit or to assist in vehicle propulsion, thus reducing the load on the engine, thereby improving the overall fuel economy of the vehicle and reducing carbon dioxide emissions.
Resumo:
Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.
Resumo:
Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.