172 resultados para Evelyn, John, 1620-1706.
Resumo:
This article examines a previously unnoticed link between the Puritan John Burgess and the Calvinist conformist George Hakewill. In 1604 Burgess preached a court sermon so outspoken and critical of James I’s religious policy that he was imprisoned. Nearly twenty years later, however, Hakewill chose to incorporate extended passages from Burgess’s sermon into the series of sermons, King David’s vow (1621), preached to Prince Charles’s household. This article considers why Burgess’s sermon became so resonant for Hakewill in the early 1620s and also demonstrates how Hakewill deliberately sought to moderate Burgess’s strident polemic. In so doing the article provides important new evidence for the politically attuned sermon culture at Prince Charles’s court in the early 1620s and also suggests how, as the parameters for clerical conformity shifted in the latter years of James’s reign, Calvinist conformists found a new appeal in the works of moderate Puritans. I
Resumo:
Book Review
Resumo:
The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.