208 resultados para Effective potentials
Resumo:
In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Ni II. Attention is expressly concentrated on the optically allowed fine-structure transitions between the 3d 9, 3d 84s, and 3d 74s 2 even parity levels and the 3d 84p and 3d 74s 4p odd parity levels. The parallel RMATRXII R-matrix package has been recently extended to allow for the inclusion of relativistic fine-structure effects. This suite of codes has been utilized in conjunction with the parallel PSTGF and PSTGICF programs in order to compute converged total collision strengths for the allowed transitions with which this study is concerned. All 113 LS terms identified with the 3d 9, 3d 84s, 3d 74s 2, 3d 84p, and 3d 74s 4p basis configurations were included in the target wavefunction representation, giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering complex. Maxwellian averaged effective collision strengths have been computed at 30 individual electron temperatures ranging from 30 to 1,000,000 K. This range comfortably encompasses all temperatures significant to astrophysical and plasma applications. The convergence of the collision strengths is exhaustively investigated and comparisons are made with previous theoretical works, where significant discrepancies exist for the majority of transitions. We conclude that intrinsic in achieving converged collision strengths and thus effective collision strengths for the allowed transitions is the combined inclusion of contributions from the (N + 1) partial waves extending to a total angular momentum value of L = 50 and further contributions from even higher partial waves accomplished by employing a "top-up" procedure.
Resumo:
We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system is here studied exactly, i.e. not in terms of a Markovian master equation. The dynamics of one and two impurities is remarkably different in respect of the standard decoherence of the spin-boson system. In particular, we show: (i) the appearance of coherence oscillations, (ii) the presence of super and subdecoherent states that differ from the standard ones of the spin-boson model, and (iii) the persistence of coherence in the system at long times. We show that this behaviour is due to the fact that the pseudospins have an internal spatial structure. We argue that collective decoherence also prompts information about the correlation length of the environment. In a one-dimensional (1D) configuration, one can change even more strongly the qualitative behaviour of the dephasing just by tuning the interaction of the bath.
Resumo:
Dyslexia is a learning difficulty affecting the acquisition of fluent reading and spelling skills due to poor phonological processing. Underlying deficits in processing sound rise time have also been found in children and adults with dyslexia. However, the neural basis for these deficits is unknown. In the present study event-related potentials were used to index neural processing and examine the effect of rise time manipulation on the obligatory N1. T-complex and P2 responses in English speaking adults with and without dyslexia. The Tb wave of the T-complex showed differences between groups, with the amplitudes for Tb becoming less negative with increased rise time for the participants with dyslexia only. Frontocentral N1 and P2 did not show group effects. Enhanced Tb amplitude that is modulated by rise time could indicate altered neural networks at the lateral surface of the superior temporal gyrus in adults with dyslexia. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This is the second of a two-part analysis exploring the interaction between UK devolution and governance of the national low carbon transition. It argues that devolution shaped the national climate governance regime created by the Climate Change Act 2008, but will itself be tested and even altered as the traction of the low carbon imperative intensifies. This dynamic is explored in the specific context of the UK’s most devolved region. The first article argued that devolution facilitated and arguably forced Northern Ireland’s devolved administration to give a highly qualified and potentially illusory consent to the regional application of the UK Act. The second article argues that making a more effective commitment to climate governance will be a defining test of its devolution arrangements but will require constitutional arrangements designed for conflict resolution to mature. Failure to do so will have important implications for the UK’s putative ‘national’ low carbon transition and the longer-term viability of devolution in the region.
Resumo:
A novel oxygen catalyst is prepared via the photodeposition of ruthenium(IV) oxide on a titania photocatalyst derived from a perruthenate precursor.
Resumo:
This article examines the question of how states have responded to the comments of the United Nations Committee against Torture through an analysis of eight Western European states. It concludes that the Committee’s recommendations have had a substantial impact in four of the states surveyed, however only a limited effect in two other states and little or no impact in the two remaining states. These findings lead to concerns as regards the effectiveness of the Committee against Torture. The article focuses on the Concluding Observations made by the Committee on the reports submitted by the states in question.
Resumo:
Simple and powerful: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).
Resumo:
Ab initio calculations for the strongly exoergic Li-2 + F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li-2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.
Resumo:
In this paper, we present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for the complicated iron-peak ion Cr II. We consider specifically the allowed lines for transitions from the 3d(5) and 3d(4)4s even parity configuration states to the 3d(4)4p odd parity configuration levels. The parallel suite of R-Matrix packages, RMATRX II, which have recently been extended to allow for the inclusion of relativistic effects, were used to compute the collision cross sections. A total of 108 LS pi/280 J pi levels from the basis configurations 3d(5), 3d(4)4s, and 3d(4)4p were included in the wavefunction representation of the target including all doublet, quartet, and sextet terms. Configuration interaction and correlation effects were carefully considered by the inclusion of seven more configurations and a pseudo-corrector (4d) over bar type orbital. The 10 configurations incorporated into the Cr II model thus listed are 3d(5), 3d(4)4s, 3d(4)4p, 3d(3)4s(2), 3d(3)4p(2), 3d(3)4s4p, 3d(4)(4d) over bar, 3d(3)4s (4d) over bar, 3d(3)4p (4d) over bar, and 3d(3)(4d) over bar (2), constituting the largest Cr II target model considered to date in a scattering calculation. The Maxwellian averaged effective collision strengths are computed for a wide range of electron temperatures 2000-100,000 K which are astrophysically significant. Care has been taken to ensure that the partial wave contributions to the collision strengths for these allowed lines have converged with "top-up" from the Burgess-Tully sum rule incorporated. Comparisons are made with the results of Bautista et al. and significant differences are found for some of the optically allowed lines considered.