116 resultados para Ecological nonlinearity
Resumo:
A low-cost field technique employing retention of the dye neutral-red by lysosomes in coelomocyte cells taken from earthworms (Lumbricus castaneus), was used as a means of assessing the ecological effects (if any) of an industrial accident. Earthworms and soil samples were collected at the site of a large industrial plastics fire in Thetford, UK along a 200 m transect leading from the factory perimeter fence, over a layer of molten plastic impregnated soil and into the surrounding forest. Coelomic fluid extracted from the earthworms was dye-loaded with neutral-red and lysosomal leaking observed. Metal residues in soil and earthworms were found to be highly elevated close to the factory perimeter and to rapidly drop to background levels within the first 50 m of the transect. Coelomocyte cells taken from earthworms adjacent to the factory perimeter showed the shortest period of neutral-red retention (2 min); cells taken from worms further into the surrounding forest had a longer retention time (12 min), whilst cells taken from worms from a control site showed even greater retention times (25 min). Thus, the neutral-red retention times correlated negatively with measured residues of heavy metals in the earthworms, the higher the body metal concentration the shorter the retention time. This field trial has demonstrated the validity of using an in vitro cellular biomarker technique for use in biological impact assessment along gradients of contamination.
Resumo:
Loss of species will directly change the structure and potentially the dynamics of ecological communities, which in turn may lead to additional species loss (secondary extinctions) due to direct and/or indirect effects (e.g. loss of resources or altered population dynamics). Furthermore, the vulnerability of food webs to repeated species loss is expected to be affected by food web topology, species interactions, as well as the order in which species go extinct. Species traits such as body size, abundance and connectivity might determine a species' vulnerability to extinction and, thus, the order in which species go primarily extinct. Yet, the sequence of primary extinctions, and their effects on the vulnerability of food webs to secondary extinctions, when species abundances are allowed to respond dynamically, has only recently become the focus of attention. Here, we analyse and compare topological and dynamical robustness to secondary extinctions of model food webs, in the face of 34 extinction sequences based on species traits. Although secondary extinctions are frequent in the dynamical approach and rare in the topological approach, topological and dynamical robustness tends to be correlated for many bottom-up directed, but not for top-down directed deletion sequences. Furthermore, removing species based on traits that are strongly positively correlated to the trophic position of species (such as large body size, low abundance, high net effect) is, under the dynamical approach, found to be as destructive as removing primary producers. Such top-down oriented removal of species are often considered to correspond to realistic extinction scenarios, but earlier studies, based on topological approaches, have found such extinction sequences to have only moderate effects on the remaining community. Thus, our result suggests that the structure of ecological communities, and therefore the integrity of important ecosystem processes could be more vulnerable to realistic extinction sequences than previously believed.
Resumo:
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems.
Resumo:
The study of ecological differences among coexisting microparasites has been largely neglected, but it addresses important and unusual issues because there is no clear distinction in such cases between conventional (resource) and apparent competition. Here patterns in the population dynamics are examined for four species of Bartonella (bacterial parasites) coexisting in two wild rodent hosts, bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus). Using generalized linear modeling and mixed effects models, we examine, for these four species, seasonal patterns and dependencies on host density (both direct and delayed) and, having accounted for these, any differences in prevalence between the two hosts. Whereas previous studies had failed to uncover species differences, here all four were different. Two, B. doshiae and B. taylorii, were more prevalent in wood mice, and one, B. birtlesii, was more prevalent in bank voles. B. birtlesii, B. grahamii, and B. taylorii peaked in prevalence in the fall, whereas B. doshiae peaked in spring. For B. birtlesii in bank voles, density dependence was direct, but for B. taylorii in wood mice density dependence was delayed. B. birtlesii prevalence in wood mice was related to bank vole density. The implications of these differences for species coexistence are discussed.
Resumo:
Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in “100 of the World's Worst Invasive Alien Species”; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest “attack rates” a, shortest “handling times” h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach.
Resumo:
Sediment particle size analysis (PSA) is routinely used to support benthic macrofaunal community distribution data in habitat mapping and Ecological Status (ES) assessment. No optimal PSA Method to explain variability in multivariate macrofaunal distribution has been identified nor have the effects of changing sampling strategy been examined. Here, we use benthic macrofaunal and PSA grabs from two embayments in the south of Ireland. Four frequently used PSA Methods and two common sampling strategies are applied. A combination of laser particle sizing and wet/dry sieving without peroxide pre-treatment to remove organics was identified as the optimal Method for explaining macrofaunal distributions. ES classifications and EUNIS sediment classification were robust to changes in PSA Method. Fauna and PSA samples returned from the same grab sample significantly decreased macrofaunal variance explained by PSA and caused ES to be classified as lower. Employing the optimal PSA Method and sampling strategy will improve benthic monitoring. © 2012 Elsevier Ltd.
Resumo:
Evidence correlates physical activity, psychological restoration, and social health to proximity to parks and sites of recreation. The purpose of this study was to identify perceived constraints to park use in low-income communities facing significant health disparities, with access to underutilized parks. We used a series of focus groups with families, teens, and older adults in neighborhoods with similar demographic distribution and access to parks over 125 acres in size. Constraints to park use varied across age groups as well as across social ecological levels, with perceived constraints to individuals, user groups, communities, and society. Policies and interventions aimed at increasing park use must specifically address barriers across social ecological levels to be successful.
Resumo:
The macrosystem refers to the overarching patterns that influence behavior at each level of the social ecology (Bronfenbrenner, 1977), making it a necessary component for assessing human development in contexts of political violence. This article proposes a method for systematically measuring the macrosystem in Northern Ireland that allows for a subnational analysis, multiple time units, and indicators of both low-level violence and positive relations. Articles were randomly chosen for each weekday in 2006-2011 from two prominent Northern Irish newspapers and coded according to their reflection of positive relations and political tensions between Catholics and Protestants. The newspaper data were then compared to existing macro-level measurements in Northern Ireland. We found that the newspaper data provided a more nuanced understanding of fluctuations in intergroup relations than the corresponding measures. This has practical implications for peacebuilding and advances our methods for assessing the impact of macro-level processes on individual development.
Resumo:
The ecological quality of lakes and other surface water bodies in the European Union is determined by the quality of the structure and functioning of the aquatic ecosystem. The depletion rate of oxygen in the hypolimnion is an important process in thermally stratified lakes and the distribution of consumption between water and sediment an important structural characteristic. It is shown that the variation of volumetric oxygen consumption rate with trophic state can be used to select lake water total phosphorus and chlorophyll concentrations that correspond to changes in the functioning of the lake. Lake morphometry has little effect on this aspect of lake function and the relative amount of oxygen consumption in the water and sediment changes only a little with trophic state, most of the consumption being in the water. Suggestions for the reference condition, good and moderate ecological quality are made using the changes in this aspect of lake function and they are presented as lake water total phosphorus and chlorophyll concentration.
Resumo:
Nonclassicality is a key ingredient for quantum enhanced technologies and experiments involving macro- scopic quantum coherence. Considering various exactly-solvable quantum-oscillator systems, we address the role played by the anharmonicity of their potential in the establishment of nonclassical features. Specifically, we show that a monotonic relation exists between the the entropic nonlinearity of the considered potentials and their ground state nonclassicality, as quantified by the negativity of the Wigner function. In addition, in order to clarify the role of squeezing--which is not captured by the negativity of the Wigner function--we focus on the Glauber-Sudarshan P-function and address the nonclassicality/nonlinearity relation using the entanglement potential. Finally, we consider the case of a generic sixth-order potential confirming the idea that nonlinearity is a resource for the generation of nonclassicality and may serve as a guideline for the engineering of quantum oscillators.