141 resultados para East Orange
Resumo:
African coastal regions are expected to experience the highest rates of population growth in coming decades. Fresh groundwater resources in the coastal zone of East Africa (EA) are highly vulnerable to seawater intrusion. Increasing water demand is leading to unsustainable and ill-planned well drilling and abstraction. Wells supplying domestic, industrial and agricultural needs are or have become, in many areas, too saline for use. Climate change, including weather changes and sea level rise, is expected to exacerbate this problem. The multiplicity of physical, demographic and socio-economic driving factors makes this a very challenging issue for management. At present the state and probable evolution of coastal aquifers in EA are not well documented. The UPGro project 'Towards groundwater security in coastal East Africa' brings together teams from Kenya, Tanzania, Comoros Islands and Europe to address this knowledge gap. An integrative multidisciplinary approach, combining the expertise of hydrogeologists, hydrologists and social scientists, is investigating selected sites along the coastal zone in each country. Hydrogeologic observatories have been established in different geologic and climatic settings representative of the coastal EA region, where focussed research will identify the current status of groundwater and identify future threats based on projected demographic and climate change scenarios. Researchers are also engaging with end users as well as local community and stakeholder groups in each area in order to understanding the issues most affecting the communities and searching sustainable strategies for addressing these.
Resumo:
Tryptophyllins are a group of small (4–14 amino acids), heterogenous peptides, mostly from the skins of hylid frogs from the genera, Phyllomedusa and Litoria. To date, more than forty TPHs have been discovered in species from these two genera. Here, we describe the identification of a novel tryptophyllin type 3 peptide, PhT-3, from the extracts of skin of the orange-legged monkey frog, Phyllomedusa hypochondrialis, and molecular cloning of its precursor-encoding cDNA from a cDNA library constructed from the same skin sample. Full primary structural characterization was achieved using a combination of direct Edman degradation, mass spectrometry and deduction from cloned skin-derived cDNA. The open-reading frame of the precursor cDNA was found to consist of 63 amino acid residues. The mature peptide arising from this precursor contains a post-translationally modified N-terminal pyroglutamate (pGlu) residue, formed from acid-mediated cyclization of an N-terminal Gln (Q) residue, and with the structure: pGlu-Asp-Lys-Pro-Phe-Trp-Pro-Pro-Pro-Ile-Tyr-Pro-Met. Pharmacological assessment of a synthetic replicate of this peptide on phenylephrine preconstricted rat tail artery segments, revealed a reduction in relaxation induced by bradykinin. PhT-3 was also found to mediate antiproliferative effects on human prostate cancer cell lines.
Resumo:
It is now recognised that inactive lifestyles underpin much of the disease burden evident in the richer nations of the world. Indeed, the WHO has identified physical inactivity as a 'global public health problem' and has established minimum physical activity (PA) targets for people at different stages of the life-course. Yet, according to WHO, just under 1/3 of working age adults across the globe meet those targets and it is not at all clear how the disjunction between the recommendations of policy makers and the behaviour of ordinary people might be surmounted. Using an opportunity to examine the impact of an urban regeneration project on community residents in East Belfast (Northern Ireland) this paper examines the views of some 113 people on how to increase rates of PA in an area of multiple deprivation. The results of the analysis suggest that lay people rarely consider PA as a discrete issue, or one that centres on individuals and their motivation, but rather as one component in a complex web of concerns, processes and events that include such things as the actions of neighbours and relatives, material and political environments, vandalism, violence, and the weather. We explore and unravel the nature of those concerns using novel methods of content analysis that generate 'issue webs'. Particular attention is paid to the ways in which lay people conceptualize 'activity' and to the manner in which they point to ways of encouraging activity that are rooted in everyday life rather than in the corpocentric, agent-centred and often sport dominated strategies favoured by local policy makers. Our results support those who argue that interventions to increase rates of PA need to move beyond behavioural approaches that focus on individuals and consider the social, political and material contexts in which 'activity' occurs.
Resumo:
Researchers have argued that, depending on the framing of the Northern Ireland conflict, each group could either be a minority or a majority relative to the other. This complicates macrosocial explanations of the conflict which make specific predictions on the basis of minority or majority positions. The present paper argues that this conundrum may have arisen from the inherent variability in microidentity processes that do not fit easily with macroexplanations. In this paper the rhetoric of relative group position is analysed in political speeches delivered by leading members of an influential Protestant institution in Northern Ireland. It is apparent that minority and majority claims are not fixed but are
flexibly used to achieve local rhetorical goals. Furthermore, the speeches differ before and after the Good Friday Agreement, with a reactionary “hegemonic” Unionist position giving way to a “majority-rights power sharing” argument and a “pseudo-minority” status giving way to a “disempowered minority” argument. These results suggest a view of the Northern Ireland conflict as a struggle for “symbolic power,” i.e., the ability to flexibly define the intergroup situation to the ingroup’s advantage.
Resumo:
Soils and saprolites developed from interbedded shales and limestones of the Conasauga Group are widespread in the Valley and Ridge Province of East Tennessee. Thin sections from four soil profiles were examined by petrographic and scanning electron microscopy including backscatter electron and energy-dispersive X-ray analyses. Iron and manganese released by weathering had migrated differentially downward and precipitated as crystalline and noncrystalline oxides. Oxides were observed as nodules, granular particulates, pore fillings, and coatings on other minerals, packing voids, vesicles, channels, and chambers. Iron oxides formed predominantly as coatings on packing-void walls and on laminated clays in vesicles and channels. Manganese oxides occurred as an early replacement phase of packing voids and of fracture-filling carbonate minerals. Iron oxides were dominant in moderately well-drained and oxidized horizons of the soil solum, whereas manganese oxides were abundant in the oxidized and moderately leached saprolite zone where the water table fluctuates seasonally. Therefore, a manganese enrichment zone, on a bulk soil basis, occurred generally below the iron oxide zone in the soil profile. Such differential migration and accumulation of iron and manganese have been controlled by localized soil microenvironments. Micromorphologic features observed in this study are important in land-use evaluation for hazardous waste disposal. © 1990.
Resumo:
This work comprises the photoactivity assessment of transparent sol–gel TiO2 coatings of various thickness using two test systems. The initial rates of both photocatalytic reactions, namely the oxidative bleaching of Acid Orange 7 (AO7) and the reductive bleaching of 2,6-dichlorindophenol (DCIP) increase linearly with increasing titania film thickness as well as with increasing absorbed light flux. The latter work revealed quantum yields (QY) of 0.19% and 92% for the AO7 and DCIP test system, respectively. The low QY for the AO7 oxidation is due to the combination of a slow irreversible reduction of oxygen and also for the oxidation of AO7, thus favouring the high efficiency for electron–hole recombination that is typical for aqueous organic pollutants. In contrast, the very high QY for the photocatalysed reduction of DCIP is due to the presence of a vast excess of glycerol which traps the photogenerated holes efficiently and so allow time for the slower reduction of dye to take place. Furthermore, the oxidation of glycerol results in the generation of highly reducing R-hydroxyalkyl radicals that are able to also reduce DCIP. As a consequence of this ‘current doubling’ effect, the observed QY (92%) is much higher than the apparent theoretical value of 50%.
Resumo:
Regional policy frameworks need to focus on strengthening the ICT infrastructure, clarifying market rules to build user confidence, developing networks, facilitating ICT-enabled clustering and infrastructure sharing.
Resumo:
The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.
Resumo:
The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions.
Resumo:
Quantum yields of the photocatalytic degradation of methyl orange under controlled periodic illumination (CPI) have been modelled using existing models. A modified Langmuir-Hinshelwood (L-H) rate equation was used to predict the degradation reaction rates of methyl orange at various duty cycles and a simple photocatalytic model was applied in modelling quantum yield enhancement of the photocatalytic process due to the CPI effect. A good agreement between the modelled and experimental data was observed for quantum yield modelling. The modified L-H model, however, did not accurately predict the photocatalytic decomposition of the dye under periodic illumination.