113 resultados para EUNIS classification
Resumo:
Despite pattern recognition methods for human behavioral analysis has flourished in the last decade, animal behavioral analysis has been almost neglected. Those few approaches are mostly focused on preserving livestock economic value while attention on the welfare of companion animals, like dogs, is now emerging as a social need. In this work, following the analogy with human behavior recognition, we propose a system for recognizing body parts of dogs kept in pens. We decide to adopt both 2D and 3D features in order to obtain a rich description of the dog model. Images are acquired using the Microsoft Kinect to capture the depth map images of the dog. Upon depth maps a Structural Support Vector Machine (SSVM) is employed to identify the body parts using both 3D features and 2D images. The proposal relies on a kernelized discriminative structural classificator specifically tailored for dogs independently from the size and breed. The classification is performed in an online fashion using the LaRank optimization technique to obtaining real time performances. Promising results have emerged during the experimental evaluation carried out at a dog shelter, managed by IZSAM, in Teramo, Italy.
Resumo:
Network management tools must be able to monitor and analyze traffic flowing through network systems. According to the OpenFlow protocol applied in Software-Defined Networking (SDN), packets are classified into flows that are searched in flow tables. Further actions, such as packet forwarding, modification, and redirection to a group table, are made in the flow table with respect to the search results. A novel hardware solution for SDN-enabled packet classification is presented in this paper. The proposed scheme is focused on a label-based search method, achieving high flexibility in memory usage. The implemented hardware architecture provides optimal lookup performance by configuring the search algorithm and by performing fast incremental update as programmed the software controller.
Resumo:
Recent trends, such as Software-Defined Networking (SDN), introduce programmability to the network with the opportunity to dynamically route traffic based on flow descriptions. Packet header lookup is the first phase in this process. In this paper, we illustrate improved header lookup and flow rule update speeds over conventional lookup algorithms. This is achieved by performing individual packet header field searches and combining the search results. We propose that individual algorithms should be selected for packet classification based on the application requirements. Improving the network processing performance with our configurable solution will directly support the proposed capability of programmability in SDN.
Resumo:
The newly updated inventory of palaeoecological research in Latin America offers an important overview of sites available for multi-proxy and multi-site purposes. From the collected literature supporting this inventory, we collected all available age model metadata to create a chronological database of 5116 control points (e.g. 14C, tephra, fission track, OSL, 210Pb) from 1097 pollen records. Based on this literature review, we present a summary of chronological dating and reporting in the Neotropics. Difficulties and recommendations for chronology reporting are discussed. Furthermore, for 234 pollen records in northwest South America, a classification system for age uncertainties is implemented based on chronologies generated with updated calibration curves. With these outcomes age models are produced for those sites without an existing chronology, alternative age models are provided for researchers interested in comparing the effects of different calibration curves and age–depth modelling software, and the importance of uncertainty assessments of chronologies is highlighted. Sample resolution and temporal uncertainty of ages are discussed for different time windows, focusing on events relevant for research on centennial- to millennial-scale climate variability. All age models and developed R scripts are publicly available through figshare, including a manual to use the scripts.
Resumo:
Drawing on ethnographic data collected while working as a deckhand on two Scottish trawlers, this article analyses the spatialisation of social, religious and economic inequalities that marked relations between crew members while they hunted for prawns in the North Sea. Moreover, it explores these inequalities as a wider feature of life in Gamrie, Aberdeenshire, a Brethren and Presbyterian fishing village riven by disparities in wealth and religion. Inequalities identified by fishermen at sea mirrored those identified by residents onshore, resulting in fishing boats being experienced as small 'floating villages'. Drawing on the work of Rodney Needham, this article suggests that these asymmetries can be traced along a vertical axis, with greater to lesser wealth and religiosity moving from top/above to bottom/below. The article seeks to understand the presence and persistence of these hierarchies at sea and on land, by revisiting dual classification within anthropological theory.
Resumo:
This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.
Resumo:
Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.