184 resultados para ERGODIC OPTIMIZATION
Resumo:
Optimal fault ride-through (FRT) conditions for a doubly-fed induction generator (DFIG) during a transient grid fault are analyzed with special emphasis on improving the active power generation profile. The transition states due to crowbar activation during transient faults are investigated to exploit the maximum power during the fault and post-fault period. It has been identified that operating slip, severity of fault and crowbar resistance have a direct impact on the power capability of a DFIG, and crowbar resistance can be chosen to optimize the power capability. It has been further shown that an extended crowbar period can deliver enhanced inertial response following the transient fault. The converter protection and drive train dynamics have also been analyzed while choosing the optimum crowbar resistance and delivering enhanced inertial support for an extended crowbar period.
Resumo:
A PMU based WAMS is to be placed on a weakly coupled section of distribution grid, with high levels of distributed generation. In anticipation of PMU data a Siemens PSS/E model of the electrical environment has been used to return similar data to that expected from the WAMS. This data is then used to create a metric that reflects optimization, control and protection in the region. System states are iterated through with the most desirable one returning the lowest optimization metric, this state is assessed against the one returned by PSS/E under normal circumstances. This paper investigates the circumstances that trigger SPS in the region, through varying generation between 0 and 110% and compromising the network through line loss under summer minimum and winter maximum conditions. It is found that the optimized state can generally tolerate an additional 2 MW of generation (3% of total) before encroaching the same thresholds and in one instance moves the triggering to 100% of generation output.
Resumo:
We examine the impact of transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decode-and-forward (DF) relaying in Nakagami-m fading channels. We select a single transmit antenna at the secondary transmitter which maximizes the receive signal-to-noise ratio (SNR) and combine a subset of receive antennas with the largest SNRs at the secondary receiver. In an effort to assess the performance, we first derive the probability density function and cumulative distribution function of the end-to-end SNR using the moment generating function. We then derive new exact closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expression for the high SNR approximation of the ergodic capacity, we gather deep insights into the high SNR slope and the power offset. Our results show that the high SNR slope is 1/2 under the proportional interference power constraint. Under the fixed interference power constraint, the high SNR slope is zero.
Resumo:
Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study's aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managed through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8Gy vs 35.5 ± 4.2Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4Gy vs 35.5 ± 4.2Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to deliverable apertures, particularly for plans that emphasize avoidance of critical structures. Minimizing these differences would result in better quality treatments for patients with prostate cancer who were treated with radiotherapy using MCO plans.
Resumo:
In the current investigation, rubber/clay nanocomposites were prepared by two different methods using hydrogenated nitrile butadiene rubber (HNBR) and the organoclay namely Cloisite 15A (C15A). A new novel approach involving swelling of C15A by ulltrasonication in HNBR solution has been carried out for improving the exfoliation and compatibilization of organoclays with HNBR matrix. With the addition of 5phr of clay, the elongation at break and tear strength improved by 16% and 24% respectively. The effect of coupling agents namely amino functional silane and tetrasulfido silane on the nanocomposites have been investigated. The elongation at break and tear strength improved by 46% and 77% respectively with the use of silanes. The improvement in the mechanical properties attributes to improved interaction between the organoclays and HNBR matrix. This interaction has been studied by X-ray diffraction and transmission electron microscope. Pre-dispersion technique clearly suggests very good improvement in the dispersion and properties due to better filler-rubber compatibility. © 2010 American Institute of Physics.