168 resultados para Dose Adjustment
Resumo:
The potential that laser based particle accelerators offer to solve sizing and cost issues arising with conventional proton therapy has generated great interest in the understanding and development of laser ion acceleration, and in investigating the radiobiological effects induced by laser accelerated ions. Laser-driven ions are produced in bursts of ultra-short duration resulting in ultra-high dose rates, and an investigation at Queen's University Belfast was carried out to investigate this virtually unexplored regime of cell rdaiobiology. This employed the TARANIS terawatt laser producing protons in the MeV range for proton irradiation, with dose rates exceeding 10 Gys on a single exposure. A clonogenic assay was implemented to analyse the biological effect of proton irradiation on V79 cells, which, when compared to data obtained with the same cell line irradiated with conventionally accelerated protons, was found to show no significant difference. A Relative Biological effectiveness of 1.4±0.2 at 10 % Survival Fraction was estimated from a comparison with a 225 kVp X-ray source. © 2013 SPIE.
Resumo:
Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.
Resumo:
Although relations between political violence and child adjustment are well documented, longitudinal research is needed to adequately address the many questions remaining about the contexts and developmental trajectories underlying the effects on children in areas of political violence. The study examined the relations between sectarian and nonsectarian community violence and adolescent adjustment problems over 4 consecutive years. Participants included 999 mother-child dyads (482 boys, 517 girls), M ages = 12.18 (SD = 1.82), 13.24 (SD = 1.83), 13.61 (SD = 1.99), and 14.66 (SD = 1.96) years, respectively, living in socially deprived neighborhoods in Belfast, Northern Ireland, a context of historical and ongoing political violence. In examining trajectories of adjustment problems, including youth experience with both sectarian and nonsectarian antisocial behaviors, sectarian antisocial behavior significantly predicted more adjustment problems across the 4 years of the study. Experiencing sectarian antisocial behavior was related to increased adolescent adjustment problems, and this relationship was accentuated in neighborhoods characterized by higher crime rates. The discussion considers the implications for further validating the distinction between sectarian and nonsectarian violence, including consideration of neighborhood crime levels, from the child's perspective in a setting of political violence. Copyright © Cambridge University Press 2013.
Resumo:
This study describes ultrastructural changes in the pigmented hooded Lister rat retina, 3-12 months following X-irradiation with single doses of between 200 and 2000 cGy. The extreme radiosensitivity of the photoreceptor cells was underlined by the continued manifestation of fine structural changes and cell death up to 6 months post-radiation in animals receiving doses above 500 cGy. The retinal pigment epithelial (RPE) cells were more radioresistant than photoreceptors and RPE cell loss was only observed at doses of more than 1500 cGy. One year after irradiation with 1500 cGy the retinal vasculature showed capillary occlusion with some evidence of recanalisation. Telangiectasia was observed in the large retinal veins. Although the inner retinal neurones and glial cells showed no evidence of direct radiation damage, the nerve fibre layer adjacent to occluded retinal vessels demonstrated ultrastructural evidence of ischaemic neuropathy and retinal oedema. At doses above 1500 cGy the choriocapillaris showed platelet aggregation and capillary loss.
Resumo:
In this study Lister rats were given doses of X-rays ranging from 200-2,000 Rads to the retina of one eye, sacrificed at various time intervals between one hour and one month later and the irradiated eye processed for electron microscopy. The rod photoreceptor cells were by far the most radiosensitive cells in the retina, their outer segments showing distinctive membrane damage at one hour after 200 Rads of X-rays. Photoreceptor cell death was not seen at doses less than 1,000 Rads in the time period of the experiment. The retinal pigment epithelial (RPE) cells showed damage in the form of mitochondrial swelling but only in doses over 500 Rads. Retinal pigment epithelial cell loss did not occur under 2,000 Rads. The inner retinal neurones, glial elements and the retinal vasculature did not show any ill effects in the time period of this study.
Resumo:
Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.
Resumo:
The treatment of older patients with acute myeloid leukaemia, who are not considered suitable for conventional intensive therapy, is unsatisfactory. Low-dose Ara-C(LDAC) has been established as superior to best supportive care, but only benefits the few patients who enter complete remission. Alternative or additional treatments are required to improve the situation. This randomised trial compared the addition of the immunoconjugate, gemtuzumab ozogamicin (GO), at a dose of 5 mg on day 1 of each course of LDAC, with the intention of improving the remission rate and consequently survival. Between June 2004 and June 2010, 495 patients entered the randomisation. The addition of GO significantly improved the remission rate (30% vs 17%; odds ratio(OR) 0.48 (0.32-0.73); P=0.006), but not the 12 month overall survival (25% vs 27%). The reason for the induction benefit failing to improve OS was two-fold: survival of patients in the LDAC arm who did not enter remission and survival after relapse were both superior in the LDAC arm. Although the addition of GO to LDAC doubled the remission rate it did not improve overall survival. Maintaining remission in older patients remains elusive.
Resumo:
To describe the patterns of use, clinical outcomes, and dose-volume histogram parameters of high-dose-rate interstitial brachytherapy (HDR-ISBT) in the management of Bartholin's gland cancer.
Resumo:
AIMS: To investigate the potential dosimetric and clinical benefits predicted by using four-dimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer.
MATERIALS AND METHODS:
Twenty patients were planned using free breathing 4DCT then retrospectively delineated on three-dimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and normal tissue complication probability (NTCP) for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman-Kutcher-Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for mean lung dose (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy).
RESULTS:
4DCT based plans had lower PTV volumes, a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (P < 0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (P = 0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans.
CONCLUSIONS:
4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates. 4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival.
Resumo:
For the delivery of intensity-modulated radiation therapy (IMRT), highly modulated fields are used to achieve dose conformity across a target tumour volume. Recent in vitro evidence has demonstrated significant alterations in cell survival occurring out-of-field which cannot be accounted for on the basis of scattered dose. The radiobiological effect of area, dose and dose-rate on out-of-field cell survival responses following exposure to intensity-modulated radiation fields is presented in this study. Cell survival was determined by clonogenic assay in human prostate cancer (DU-145) and primary fibroblast (AG0-1522) cells following exposure to different modulated field configurations delivered using a X-Rad 225 kVp x-ray source. Uniform survival responses were compared to in- and out-of-field responses in which 25-99% of the cell population was shielded. Dose delivered to the out-of-field region was varied from 1.6-37.2% of that delivered to the in-field region using different levels of brass shielding. Dose rate effects were determined for 0.2-4 Gy min⁻¹ for uniform and modulated exposures with no effect seen in- or out-of-field. Survival responses showed little dependence on dose rate and area in- and out-of-field with a trend towards increased survival with decreased in-field area. Out-of-field survival responses were shown to scale in proportion to dose delivered to the in-field region and also local dose delivered out-of-field. Mathematical modelling of these findings has shown survival response to be highly dependent on dose delivered in- and out-of-field but not on area or dose rate. These data provide further insight into the radiobiological parameters impacting on cell survival following exposure to modulated irradiation fields highlighting the need for refinement of existing radiobiological models to incorporate non-targeted effects and modulated dose distributions.
Resumo:
Purpose: The aim of this work was to determine if volumetric modulated arc therapy (VMAT) plans, created for constant dose-rate (cdrVMAT) delivery are a viable alternative to step and shoot five-field intensity modulated radiation therapy (IMRT). Materials and methods: The cdrVMAT plans, inverse planned on a treatment planning system with no solution to account for couch top or rails, were created for delivery on a linear accelerator with no variable dose rate control system. A series of five-field IMRT and cdrVMAT plans were created using dual partial arcs (gantry rotating between 260° and 100°) with 4° control points for ten prostate patients with the average rectal constraint incrementally increased. Pareto fronts were compared for the planning target volume homogeneity and average rectal dose between the two techniques for each patient. Also investigated were tumour control probability and normal tissue complication probability values for each technique. The delivery parameters [monitor units (MU) and time] and delivery accuracy of the IMRT and VMAT plans were also compared. Results: Pareto fronts showed that the dual partial arc plans were superior to the five-field IMRT plans, particularly for the clinically acceptable plans where average rectal doses were less for rotational plans (p = 0·009) with no statistical difference in target homogeneity. The cdrVMAT plans had significantly more MU (p = 0·005) but the average delivery time was significantly less than the IMRT plans by 42%. All clinically acceptable cdrVMAT plans were accurate in their delivery (gamma 99·2 ± 1·1%, 3%3 mm criteria). Conclusions Accurate delivery of dual partial arc cdrVMAT avoiding the couch top and rails has been demonstrated.