121 resultados para Dentine bonding agent
Resumo:
We report the synthesis of a family of gelators in which alkyl chains are connected to the amino groups of L-lysine methyl ester using a range of different hydrogen bonding linking groups (carbamate, amide, urea, thiourea and diacylhydrazine) using simple synthetic methodology based on isocyanate or acid chloride chemistry. The ability of these compounds to gelate organic solvents such as toluene or cyclohexane can be directly related to the ability of the linking group to form intermolecular hydrogen bonds. In general terms, the ability to structure solvents can be considered as: thiourea <carbamate <amide <urea similar to diacylhydrazine. This process has been confirmed by thermal measurements, scanning electron microscopy (SEM) and infrared and circular dichroism spectroscopies. By deprotecting the methyl ester group, we have demonstrated that a balance between hydrophobic and hydrophilic groups is essential-if the system has too much hydrophilicity (e. g., diacylhydrazine, urea) it will not form gels due to low solubility in the organic media. However, the less effective gelators based on amide and carbamate linkages are enhanced by converting the methyl ester to a carboxylic acid. Furthermore, subsequent mixing of the acid with a second component (diaminododecane) further enhances the ability to form networks, and, in the case of the amide, generates a two-component gel, which can immobilise a wide range of solvents of industrial interest including petrol and diesel (fuel oils), olive oil and sunflower oil (renewable food oils) and ethyl laurate, isopropyl myristate and isopropyl palmitate (oils used in pharmaceutical formulation). The gels are all thermoreversible, and may therefore be useful in controlled release/formulation applications.
Resumo:
Correctly modelling and reasoning with uncertain information from heterogeneous sources in large-scale systems is critical when the reliability is unknown and we still want to derive adequate conclusions. To this end, context-dependent merging strategies have been proposed in the literature. In this paper we investigate how one such context-dependent merging strategy (originally defined for possibility theory), called largely partially maximal consistent subsets (LPMCS), can be adapted to Dempster-Shafer (DS) theory. We identify those measures for the degree of uncertainty and internal conflict that are available in DS theory and show how they can be used for guiding LPMCS merging. A simplified real-world power distribution scenario illustrates our framework. We also briefly discuss how our approach can be incorporated into a multi-agent programming language, thus leading to better plan selection and decision making.
Resumo:
This paper describes middleware-level support for agent mobility, targeted at hierarchically structured wireless sensor and actuator network applications. Agent mobility enables a dynamic deployment and adaptation of the application on top of the wireless network at runtime, while allowing the middleware to optimize the placement of agents, e.g., to reduce wireless network traffic, transparently to the application programmer. The paper presents the design of the mechanisms and protocols employed to instantiate agents on nodes and to move agents between nodes. It also gives an evaluation of a middleware prototype running on Imote2 nodes that communicate over ZigBee. The results show that our implementation is reasonably efficient and fast enough to support the envisioned functionality on top of a commodity multi-hop wireless technology. Our work is to a large extent platform-neutral, thus it can inform the design of other systems that adopt a hierarchical structuring of mobile components. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.
Resumo:
This paper presents a multi-agent system approach to address the difficulties encountered in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission and distribution. The approach models uncertainty and combines multiple sources of uncertain information to deliver robust plan selection. We examine the approach in the context of a simplified power supply/demand scenario using a residential grid connected solar system and consider the challenges of modelling and reasoning with
uncertain sensor information in this environment. We discuss examples of plans and actions required for sensing, establish and discuss the effect of uncertainty on such systems and investigate different uncertainty theories and how they can fuse uncertain information from multiple sources for effective decision making in
such a complex system.
Resumo:
Density functional theory has been used to study the adsorption of CH3 on Ni(111). CH3 is found to adsorb strongly at all four high symmetry sites of the Ni(111) surface. Calculated adsorption energies of CH3 on the different sites are in the following order: hcp approximate to fcc>bridge>top. The bonding and structures of CH3 on the different sites are analysed in detail. An important factor, namely three-centre bonding between carbon, hydrogen and nickel which contributes to the 'soft' C-H vibrational frequency of CH3 on Ni(111), and may determine the preferred chemisorption site, is stressed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A solvent-vapour thermoplastic bonding process is reported which provides high strength bonding of PMMA over a large area for multi-channel and multi-layer microfluidic devices with shallow high resolution channel features. The bond process utilises a low temperature vacuum thermal fusion step with prior exposure of the substrate to chloroform (CHCl3) vapour to reduce bond temperature to below the PMMA glass transition temperature. Peak tensile and shear bond strengths greater than 3 MPa were achieved for a typical channel depth reduction of 25 µm. The device-equivalent bond performance was evaluated for multiple layers and high resolution channel features using double-side and single-side exposure of the bonding pieces. A single-sided exposure process was achieved which is suited to multi-layer bonding with channel alignment at the expense of greater depth loss and a reduction in peak bond strength. However, leak and burst tests demonstrate bond integrity up to at least 10 bar channel pressure over the full substrate area of 100 mm x 100 mm. The inclusion of metal tracks within the bond resulted in no loss of performance. The vertical wall integrity between channels was found to be compromised by solvent permeation for wall thicknesses of 100 µm which has implications for high resolution serpentine structures. Bond strength is reduced considerably for multi-layer patterned substrates where features on each layer are not aligned, despite the presence of an intermediate blank substrate. Overall a high performance bond process has been developed that has the potential to meet the stringent specifications for lab-on-chip deployment in harsh environmental conditions for applications such as deep ocean profiling.
Resumo:
Ten medieval permanent teeth were subjected to incremental dentine sectioning and stable isotope analysis to investigate dietary changes in high resolution. In addition to this, eight increments were also selected for 14C measurements to examine possible intra-individual age differences. Results reveal the cessation of weaning, various dietary profiles and in some cases significantly different 14C ages obtained from a single tooth. This case study illustrates how 14C measurements can function as a proxy alongside the commonly used carbon and nitrogen stable isotope values to interpret the diet of past individuals
Resumo:
Although recent decades have seen an improved cure rate for newly diagnosed paediatric acute lymphoplastic leukaemia (ALL), the treatment options for adult ALL, T-cell ALL (T-ALL) and relapsed disease remain poor. We have developed a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds and established their anticancer efficacy in a variety of human tumour cell types. Here, we demonstrate that PBOX-15 inhibits cell growth, and induces G2/M cell cycle arrest and apoptosis in both T-ALL and B-cell ALL (B-ALL) cells. In addition, prior to PBOX-15-induced apoptosis, PBOX-15 decreases ALL cell adhesion, spreading and migration. Concurrently, PBOX-15 differentially down-regulates β1-, β2- and α4-integrin expression in ALL cells and significantly decreases integrin-mediated cell attachment. PBOX-15 interferes with the lateral mobility and clustering of integrins in both B-ALL and T-ALL cells. These data suggest that PBOX-15 is not only effective in inducing apoptosis in ALL cells, but also has the potential to disrupt integrin-mediated adhesion of malignant lymphocytes, which represents a novel avenue for regulating leukaemic cell homing and migration.
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either drug alone (P < 0.01). Cell cycle analysis of propidium iodide-stained cells showed that STI-571 significantly reduced PBOX-6-induced G2M arrest and polyploid formation with a concomitant increase in apoptosis. Similar results were obtained in K562 CML cells using lead MTAs (paclitaxel and nocodazole) in combination with STI-571. Potentiation of PBOX-6-induced apoptosis by STI-571 was specific to Bcr-Abl-positive leukemia cells with no cytoxic effects observed on normal peripheral blood cells. The combined treatment of STI-571 and PBOX-6 was associated with the down-regulation of Bcr-Abl and repression of proteins involved in Bcr-Abl transformation, namely the antiapoptotic proteins Bcl-x(L) and Mcl-1. Importantly, PBOX-6/STI-571 combinations were also effective in STI-571-resistant cells. Together, these findings highlight the potential clinical benefits in simultaneously targeting the microtubules and the Bcr-Abl oncoprotein in STI-571-sensitive and -resistant CML cells.
Resumo:
For physicians facing patients with organ-limited metastases from colorectal cancer, tumor shrinkage and sterilization of micrometastatic disease is the main goal, giving the opportunity for secondary surgical resection. At the same time, for the majority of patients who will not achieve a sufficient tumor response, disease control remains the predominant objective. Since FOLFOX or FOLFIRI have similar efficacies, the challenge is to define which could be the most effective targeted agent (anti-EGFR or anti-VEGF) to reach these goals. Therefore, a priori molecular identification of patients that could benefit from anti-EGFR or anti-VEGF monoclonal antibodies (i.e. the currently approved targeted therapies for metastatic colorectal cancer) is of critical importance. In this setting, the KRAS mutation status was the first identified predictive marker of response to anti-EGFR therapy. Since it has been demonstrated that tumors with KRAS mutation do not respond to anti-EGFR therapy, KRAS status must be determined prior to treatment. Thus, for KRAS wild-type patients, the choices that remain are either anti-VEGF or anti-EGFR. In this review, we present the most updated data from translational research programs dealing with the identification of biomarkers for response to targeted therapies.
Resumo:
Background: Large-scale biological jobs on high-performance computing systems require manual intervention if one or more computing cores on which they execute fail. This places not only a cost on the maintenance of the job, but also a cost on the time taken for reinstating the job and the risk of losing data and execution accomplished by the job before it failed. Approaches which can proactively detect computing core failures and take action to relocate the computing core's job onto reliable cores can make a significant step towards automating fault tolerance. Method: This paper describes an experimental investigation into the use of multi-agent approaches for fault tolerance. Two approaches are studied, the first at the job level and the second at the core level. The approaches are investigated for single core failure scenarios that can occur in the execution of parallel reduction algorithms on computer clusters. A third approach is proposed that incorporates multi-agent technology both at the job and core level. Experiments are pursued in the context of genome searching, a popular computational biology application. Result: The key conclusion is that the approaches proposed are feasible for automating fault tolerance in high-performance computing systems with minimal human intervention. In a typical experiment in which the fault tolerance is studied, centralised and decentralised checkpointing approaches on an average add 90% to the actual time for executing the job. On the other hand, in the same experiment the multi-agent approaches add only 10% to the overall execution time