156 resultados para Death Certificates.
Resumo:
Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.
Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.
Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.
Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK
Resumo:
Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals(1,2). Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases(3,4). Although metacaspases are essential for PCD(5-7), their natural substrates remain unknown(4,8). Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression(9-15), is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.
Resumo:
Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn2+ concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.
Resumo:
Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies , somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.
Resumo:
Malone, C. A. T., Bonanno, A., Gouder, T., Stoddart, S. K. F., and Trump, D.
Resumo:
reprinted
Resumo:
Trump, D., Malone, C and Stoddart, S., ,G. Burenhult, (ed.). 1993, Harper Collins: New York. p. 100-101.
Resumo:
Background: Studies investigating the association between glycated hemoglobin (HbA) level and mortality risk in diabetic patients receiving hemodialysis have shown conflicting results.
Study Design: We conducted a systematic review and meta-analysis using MEDLINE, EMBASE, Web of Science, and the Cochrane Library.
Setting & Population: Diabetic patients on maintenance hemodialysis therapy.
Selection Criteria for Studies: Observational studies or randomized controlled trials investigating the association between HbA values and mortality risk. Study authors were asked to provide anonymized individual patient data or reanalyze results according to a standard template.
Predictor: Single measurement or mean HbA values. Mean HbA values were calculated using all individual-patient HbA values during the follow-up period of contributing studies.
Outcome: HR for mortality risk.
Results: 10 studies (83,684 participants) were included: 9 observational studies and one secondary analysis of a randomized trial. After adjustment for confounders, patients with baseline HbA levels =8.5% (=69 mmol/mol) had increased mortality (7 studies; HR, 1.14; 95% CI, 1.09-1.19) compared with patients with HbA levels of 6.5%-7.4% (48-57 mmol/mol). Likewise, patients with a mean HbA value =8.5% also had a higher adjusted risk of mortality (6 studies; HR,1.29; 95% CI, 1.23-1.35). There was a small but nonsignificant increase in mortality associated with mean HbA levels =5.4% (=36 mmol/mol; 6 studies; HR, 1.09; 95% CI, 0.89-1.34). Sensitivity analyses in incident (=90 days of hemodialysis) and prevalent patients (>90 days of hemodialysis) showed a similar pattern. In incident patients, mean HbA levels =5.4% also were associated with increased mortality risk (4 studies; HR, 1.29; 95% CI, 1.23-1.35).
Limitations: Observational study data and inability to adjust for diabetes type in all studies.
Conclusions: Despite concerns about the utility of HbA measurement in hemodialysis patients, high levels (=8.5%) are associated with increased mortality risk. Very low HbA levels (=5.4%) also may be associated with increased mortality risk.
Resumo:
AIMS/HYPOTHESIS: Premature death of retinal pericytes is a pathophysiological hallmark of diabetic retinopathy. Among the mechanisms proposed for pericyte death is exposure to AGE, which accumulate during diabetes. The current study used an in vitro model, whereby retinal pericytes were exposed to AGE-modified substrate and the mechanisms underlying pericyte death explored. METHODS: Pericytes were isolated from bovine retinal capillaries and propagated on AGE-modified basement membrane (BM) extract or non-modified native BM. The extent of AGE modification was analysed. Proliferative responses of retinal pericytes propagated on AGE-modified BM were investigated using a 5-bromo-2-deoxy-uridine-based assay. The effect of extrinsically added platelet-derived growth factor (PDGF) isoforms on these proliferative responses was also analysed alongside mRNA expression of the PDGF receptors. Apoptotic death of retinal pericytes grown on AGE-modified BM was investigated using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling labelling, mitochondrial membrane depolarisation and by morphological assessment. We also measured both the ability of PDGF to reverse Akt dephosphorylation that was mediated by AGE-modified BM, and increased pericyte apoptosis. RESULTS: Retinal pericytes exposed to AGE-modified BM showed reduced proliferative responses in comparison to controls (p
Resumo:
Cell loss and regeneration were investigated and compared in the retinal microvasculature of age- and sex-matched normal and streptozotocin diabetic rats. Selective pericyte loss in the diabetic rat was characterized by changes in the pericyte to endothelial cell ratio in retinal capillaries isolated for microscopy by the trypsin digest technique. A comparison of 3- and 9-month-old normal rats showed no significant change in the pericyte to endothelial cell ratio (1:2.7). In diabetic animals the ratio was reduced to 1:4.03, which was statistically significant (P less than .001). Premitotic retinal vascular cells in normal and diabetic rats were labelled with tritiated thymidine and the labelling indices calculated from cell counts of trypsin digest preparations. Methyl H3 thymidine was infused continuously over an eight-day period using osmotic mini pumps. The labelling index of endothelial cells (0.33%) in normal rats increased to 0.91% in diabetic animals (P less than .05). The labelling index of pericyte cells in normal animals (0.16%) did not increase significantly (P greater than .05) in diabetic animals (0.19%). A special stain was used to exclude labelled polymorphonuclear leukocytes from the cell counts.
Resumo:
Background There has been an increasing interest in the health effects of long
working hours, but little empirical evidence to substantiate early
10 case series suggesting an increased mortality risk. The aim of the
current study is to quantify the mortality risk associated with long
working hours and to see if this varies by employment relations and
conditions of occupation.
Methods A census-based longitudinal study of 414 949 people aged 20-59/64
15 years, working at least 35 h/week, subdivided into four occupational
classes (managerial/professional, intermediate, own account workers,
workers in routine occupations) with linkage to deaths records
over the following 8.7 years. Cox proportional hazards models were
used to examine all-cause and cause-specific mortality risk.
20 Results Overall 9.4% of the cohort worked 55 or more h/week, but this
proportion was greater in the senior management and professional
occupations and in those who were self-employed. Analysis of 4447
male and 1143 female deaths showed that hours worked were
associated with an increased risk of all-cause mortality only for
25 men working for more than 55 or more h/week in routine/semiroutine
occupations [adjusted hazard ratios (adjHR) 1.31: 95%
confidence intervals (CIs) 1.11, 1.55)] compared with their peers
working 35–40 h/week. Their equivalent risk of death from cardiovascular
disease was (adjHR 1.49: 95% CIs 1.10, 2.00).
30 Conclusions These findings substantiate and add to the earlier studies indicating
the deleterious impact of long working hours but also suggest that
the effects are moderated by employment relations or conditions of
occupation. The policy implications of these findings are discussed.
Resumo:
Question. How many deaths were attributable to smoking in 2000 worldwide? Study design. Statistical extrapolation of epidemiological and clinical data. Main results. In the year 2000, about 12% of adults died prematurely from smoking (estimated 4.83 million uncertainty range 3.94-5.93 million). Leading causes of death attributable to smoking were cardiovascular diseases (1.69 million deaths), chronic obstructive pulmonary disease (0.97 million deaths) and lung cancer (0.85 million deaths; 71% of lung cancers were smoking related). Smoking related deaths in men were about 3 times more common than women in industrial countries, and about 7 times more common in developing countries. Authors' conclusions. Smoking was a major cause of death worldwide in 2000. © 2004 Elsevier Ltd. All rights reserved.