222 resultados para Covalent binding
Resumo:
The extreme 3'-ends of human telomeres consist of 150–250 nucleotides of single-stranded DNA sequence together with associated proteins. Small-molecule ligands can compete with these proteins and induce a conformational change in the DNA to a four-stranded quadruplex arrangement, which is also no longer a substrate for the telomerase enzyme. The modified telomere ends provide signals to the DNA-damage-response system and trigger senescence and apoptosis. Experimental structural data are available on such quadruplex complexes comprising up to four telomeric DNA repeats, but not on longer systems that are more directly relevant to the single-stranded overhang in human cells. The present paper reports on a molecular modelling study that uses Molecular Dynamics simulation methods to build dimer and tetramer quadruplex repeats. These incorporate ligand-binding sites and are models for overhang–ligand complexes.
Resumo:
Importance of the field: Tacrolimus is the most commonly used immunosuppressive agent following solid-organ transplantation in children. Its clinical use, however, is complicated by side effects (mainly nephrotoxicity), narrow therapeutic index and pharmacokinetic variability which can result in an increased risk of treatment failure or toxicity. Studies examining inter-individual differences in the expression of the ABCB1 (ATP-binding cassette, subfamily B, member 1) gene (which encodes the drug transporter, P-gp) and its genetic polymorphisms have attempted to elucidate variations in tacrolimus response and disposition in children.
Resumo:
Background BRCA1 and cyclin D1 are both essential for normal breast development and mutation or aberration of their expression is associated with breast cancer [1,2]. Cyclin D1 is best known as a G1 cyclin where it regulates the G1 to S phase transition by acting as a rate-limiting subunit of CDK4/6 kinase activity. More recently, however, Stacey has demonstrated that cyclin D1 levels in G2/M determine whether a cell continues to proliferate or exits the cell cycle [3]. The majority of BRCA1 in the cell is bound to BARD1 through their N-terminal RING domains. Heterodimerization is essential for the stability and correct localization of the complex and confers ubiquitin ligase activity to BRCA1. The importance of the ligase activity of BRCA1 to breast cancer development is inferred from the fact that N-terminal diseaseassociated mutations are proposed to reduce ligase activity [4]. Methods Protein–protein interactions were demonstrated using yeast-two-hybrid and coimmunoprecipitation. Protein levels were altered through overexpression, siRNA and antisense technology. The effect of proteasome inhibitors and cycloheximide treatment was also examined. Results We initially identified cyclin D1 as a binding partner of BARD1 in a yeast-two-hybrid screen and defined the minimal binding region as the N-terminus of BARD1. This interaction was confirmed in vivo by coimmunoprecipitation. The N-terminus of BARD1 also binds BRCA1 and imparts ubiquitin ligase activity to the complex. Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Traditionally polyubiquitin chains linked through lysine 48 target proteins for degradation by the 26 S proteasome. We have demonstrated that cyclin D1 protein levels are inversely related to BRCA1 and BARD1 levels in several model systems. Furthermore, regulation of cyclin D1 levels occurs through a post-transcriptional mechanism and requires the ligase activity of BRCA1. Interestingly, this phenomenon is cell-cycle regulated, occurring in G2/M. Conclusion We propose that cyclin D1 is a potential substrate for BRCA1 ubiquitination and that this targets cyclin D1 for proteasomal-mediated degradation. Future work will focus on ascertaining the functional consequence of cyclin D1 regulation by the BRCA1–BARD1 complex; in particular, the impact of BRCA1, mediated through regulation of cyclin D1, on the proliferation versus differentiation decision.
Resumo:
Extracts from the Ginkgo biloba tree are widely used as herbal medicines, and include bilobalide (BB) and ginkgolides A and B (GA and GB). Here we examine their effects on human 5-HT(3)A and 5-HT(3)AB receptors, and compare these to the effects of the structurally related compounds picrotin (PTN) and picrotoxinin (PXN), the two components of picrotoxin (PTX), a known channel blocker of 5-HT3, nACh and GABA(A) receptors. The compounds inhibited 5-HT-induced responses of 5-HT3 receptors expressed in Xenopus oocytes, with IC50 values of 470 mu M (BB), 730 mu M (GB), 470 mu M (PTN), 11 mu M (PXN) and > 1 mM (GA) in 5-HT(3)A receptors, and 3.1 mM (BB), 3.9 mM (GB), 2.7 mM (PTN), 62 mu M (PXN) and > 1 mM (GA) in 5-HT(3)AB receptors. Radioligand binding on receptors expressed in HEK 293 cells showed none of the compounds displaced the specific 5-HT3 receptor antagonist [H-3]granisetron, confirming that they do not act at the agonist binding site. Inhibition by GB at 5-HT(3)A receptors is weakly use-dependent, and recovery is activity dependent, indicating channel block. To further probe their site of action at 5-HT(3)A receptors, BB and GB were applied alone or in combination with PXN, and the results fitted to a mathematical model; the data revealed partially overlapping sites of action. We conclude that BB and GB block the channel of the 5-HT(3)A receptor. Thus these compounds have comparable, although less potent, behaviour than at some other Cys-loop receptors, demonstrating their actions are conserved across the family. (C) 2010 Published by Elsevier Ltd.
Resumo:
We have analyzed the adhesion of human and murine platelets, and of recombinant human and murine GpVI ectodomains, to synthetic triple-helical collagen-like peptides. These included 57 peptides derived from the sequence of human type III collagen and 9 peptides derived from the cyanogen bromide fragment of bovine type III collagen, alpha 1(III)CB4. We have identified several peptides that interact with GpVI, in particular a peptide designated III-30 with the sequence GAOGLRGGAGPOG-PEGGKGAAGPOGPO. Both human and murine platelets bound to peptide III-30 in a GpVI-dependent manner. III-30 also supported binding of recombinant GpVI ectodomains. Cross-linked III-30 induced aggregation of human and murine platelets, although with a lower potency than collagen-related peptide. Modifications of the peptide sequence indicated that the hydroxyproline residues play a significant role in supporting its GpVI reactivity. However, many peptides containing OGP/ GPO motifs did not support adhesion to GpVI. These data indicate that the ability of a triple-helical peptide to bind GpVI is not solely determined by the presence or spatial arrangement of these OGP/GPO motifs within the peptides.
Resumo:
A set of 57 synthetic peptides encompassing the entire triple-helical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg2+-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg2+. We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides.
Resumo:
The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites -zearalenol (-ZOL) and -zearalenol (-ZOL). -ZOL exhibited the strongest estrogenic potency (EC50 0.022 ± 0.001 nM), slightly less potent than 17- estradiol (EC50 0.015 ± 0.002 nM). ZEN was ~70 times less potent than -ZOL and twice as potent as -ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, -ZOL or -ZOL. ZEN, -ZOL or -ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 M. At 100 M, cell viability decreased and levels of hormones were significantly reduced except for progesterone. -ZOL increased estradiol concentrations more than -ZOL or ZEN, with a maximum effect at 10 M, with -ZOL (562 ± 59 pg/ml) > -ZOL (494 ± 60 pg/ml) > ZEN (375 ± 43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production.
Resumo:
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].
Resumo:
Purpose. The purpose of this study was to examine the effect of synthetic endothelin (ET)-1 peptides with antigenic potential for binding and biologic activity using an in vitro model of microvascular pericytes.
Resumo:
HIV-1 integrase (IN) has become an attractive target since drug resistance against HIV-1 reverse transcriptase (RT) and protease (PR) has appeared. Diketo acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN: however the action mechanism is not well understood. Here, to study the inhibition mechanism of DKAs we performed 10 ns comparative molecular dynamics simulations on HIV-1 IN bound with three most representative DMA inhibitors: Shionogi inhibitor, S-1360 and two Merck inhibitors L-731,988 and L-708,906. Our simulations show that the acidic part of S-1360 formed salt bridge and cation-pi interactions with Lys159. In addition, the catalytic Glu152 in S-1360 was pushed away from the active site to form an ion-pair interaction with Arg199. The Merck inhibitors can maintain either one or both of these ion-pair interaction features. The difference in potencies of the DMA inhibitors is thus attributed to the different binding modes at the catalytic site. Such structural information at atomic level, not only demonstrates the action modes of DMA inhibitors but also provides a novel starting point for structural-based design of HIV-1 IN inhibitors.