285 resultados para Condensed Matter - Mesoscale and Nanoscale Physics
Resumo:
Measurements of collisional de-excitation (quenching) coefficients required for the interpretation of emission and fluorescence spectroscopic measurements are reported. Particular attention is turned on argon transitions which are of interest for actinometric determinations of atomic ground state populations and on fluorescence lines originating from excited atoms and noble gases in connection with two-photon excitation (TALIF) of atomic radicals. A novel method is described which allows to infer quenching coefficients for collisions with molecular hydrogen of noble gas states in the energy range up to 24 eV. The excitation is performed in these experiments by collisions of energetic electrons in the sheath of an RF excited hydrogen plasma during the field reversal phase which lasts about 10 ns. We describe in addition a calibration method - including quenching effects - for the determination by TALIF of absolute atomic radical densities of hydrogen, nitrogen and oxygen using two-photon resonances in noble gases close by the resonances of the species mentioned. The paper closes with first ideas on a novel technique to bypass quenching effects in TALIF by introducing an additional, controllable loss by photoionization that will allow quenching-free determination of absolute atomic densities with prevalent nanosecond laser systems in situations where collisional de-excitation dominates over spontaneous emission.
Resumo:
We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for lambda = 390 nm light with intensities up to I = 2 x 10(14) W cm(-2). The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.
Resumo:
We have measured the densities of 1s5 and 1s3 argon metastables as a function of the abundance of molecular oxygen in an inductively coupled plasma (ICP) in mixtures of Ar and O2. Laser absorption spectroscopy was used to determine the densities of the metastables. It was found that even small abundances of oxygen lead to large increases in metastable density, mostly due to the reduction in the electron number density, since electron-induced quenching determines the metastable density. At abundances higher than 7% to 15% for powers between 50 and 150W, quenching by oxygen molecules begins to dominate and the metastable density drops again.
Resumo:
The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.
An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends
Resumo:
An array-based approach is put forward to obtain insight into reactivity under mechanochemical solvent-free conditions. We describe a survey of sixty potential reactions between twelve metal salts MX2 {(M = Cu, X-2 = (OAc)(2), (HCO2)(2), (F3CCO2)(2), (acac)(2), (F(6)acac)(2), (NO3)(2), SO4; M = Ni, X-2 = (OAc)(2), (NO3)(2), SO4; M = Zn, X-2 (OAc)(2), (NO3)(2)} and five bridging organic ligands {isonicotinic acid (HINA), 1,4-benzenedicarboxylic acid (H2BDC), acetylenedicarboxylic acid (H(2)ADC), 1,3,5-benzenetricarboxylic acid (H3BTC), 4,4'-bipyridyl (BIPY). Reaction conditions involved a ball mill, applied for 15 min at 30 Hz, without external heating. When examined by XRPD, forty of the combinations gave detectable reactions, thirty-eight with crystalline products. Of these, twenty-nine reactions were quantitative (consuming all of at least one reactant). Comparison of XRPD patterns with patterns simulated from single crystal X-ray diffraction data in the Cambridge Structural Database allowed structural identification of six products. Of particular interest are the microporous framework materials [Cu(INA)(2)] and [Cu-3(BTC)(2)] (HKUST-1) obtained by reaction of the corresponding carboxylic acids with copper acetate. Other non-porous polymers with 3-dimensional connectivity, [Ni(ADC)(H2O)(4)], or 1-dimensional connectivity, [Cu(acac)(2)(BIPY)] and [Cu(F6acac)(BIPY)] were also obtained. Reaction between zinc acetate and H2ADC gave a new product which had not previously been characterised by single-crystal X-ray crystallography, but whose XRPD pattern suggests that it is isostructural with the known nickel polymer [Ni(ADC)(H2O)(4)]. Two further isostructural nickel and zinc products were obtained in reactions between HINA and nickel nitrate and zinc nitrate. Trends observed within the array are discussed. Copper acetate and copper formate were the most effective starting materials for reaction with carboxylic acids, potentially related to the basicity of their anions and the solvating effects of the formic and acetic acid byproducts. Amongst the ligands there was a general negative corelation between melting point and reactivity. The issue of pore templating in microporous phases and the generation of new structures is also discussed in relation to the Cu(INA)(2), Cu-3(BTC)(2) and nickel nitrate-BIPY systems. Overall, the study suggests that mechanochemical reactivity between metal salts and organic ligands under solvent free conditions is remarkably general. Use of array-based approaches as demonstrated here is advocated a useful way to reveal underlying trends in reactivity under solvent free mechanochemical conditions and to highlight particular cases for more detailed study.
Resumo:
In this article, we present the theory and a design methodology for a unable Quasi-Lumped Quadrature Coupler (QLQC). Because of its topology, the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry. No additional capacitors or inductors are required. A prototype at 3.5 GHz is etched on a 0.130-mm-thick layer substrate with a dielectric material of relative permittivity of 2.22. The simulated and measured scattering parameters are, presented. (c) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2219-2222 2009: Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24526
Resumo:
A pin diode-loaded active doubly periodic flat strip FSS is shown to act as a dynamic screen. It is shown that by means of d.c. bias control, we can utilize the screen in, (1) transmission mode as a dual band electromagnetic shutter, or with the inclusion of a ground plane in reflection mode, (is (2) it dual band refection canceller. (3) an amplitude shift keying (ASK) spatial modulator. The properties of the FSS are characterized using a specially designed parallel plate waveguide simulator that permits normal incidence excitation of the FSS under test. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51: 2059-2061, 2009; Published online in Wiley Inter-Science (www. interscience.wiley.com). DOI 10.1002/mop.24547
Resumo:
A simple method for the selection of the appropriate choice of surface-mounted loading resistor required for a thin radar absorber based on a high-impedance surface (HIS) principle is demonstrated. The absorber consists of a HIS, (artificial magnetic ground plane), thickness 0.03 lambda(0) surface-loaded resistive-elements interconnecting a textured surface of square patches. The properties of absorber are characterized under normal incident using a parallel plate waveguide measurement technique over the operating frequency range of 2.6-3.95 GHz. We show that for this arrangement return loss and bandwidth are insensitive to +/- 2% tolerance variations in surface resistor values about the value predicted using the method elaborated in this letter, and that better than -28 dB at 3.125 GHz reflection loss can be obtained with an effective working bandwidth of up to 11% at -10 dB reflection loss. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1733-1775, 2009; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mop.24454
Resumo:
Results from a joint experimental and theoretical study of electron attachment to chloroform (CHCl3) molecules in the gas phase are reported. In an electron swarm study involving a pulsed Townsend technique with equal gas and electron temperatures, accurate attachment rate coefficients were determined over the temperature range 295-373 K; they show an Arrhenius-type rise with increasing temperature, corresponding to an activation energy of 0.11 (1) eV. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for Cl- formation from CHCl3 over the energy range 0.001-1.25 eV at the gas temperature T-G = 300 K was measured. It exhibits clear downward cusp structure at the threshold for excitation of one quantum of the vibrational symmetric deformation mode nu(3), indicating that this mode is active in the primary attachment process. With reference to our thermal attachment rate coefficient k(T = 300 K) = 3.9(2) x 10(-9) cm(3) s(-1), a new highly resolved absolute attachment cross section for T-G = 300 K was determined. This cross section is extended to higher energies by measurements, carried out with a pulsed electron beam apparatus which also provided new data for the distinctly weaker fragment anions HCl2- and CCl2-. The resulting total absolute cross section for anion formation is used to calculate the dependence of the attachment rate coefficient k(T-e;T-G) on electron temperature T-e over the range 50-15000 K at the fixed gas temperature T-G = 300 K. In addition, we report the dependence of the relative cross section for Cl- formation on gas temperature T-G = 310-435 K). For comparison with the experimental data, R-matrix calculations have been carried out for the dominant anion channel Cl-. The results recover the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3) and on the vibrational temperature. Our results are compared with those of previous electron beam and electron swarm experiments.
Resumo:
The interactions of ions in the solid state for a series of representative 1,3-dialkylimidazolium hexafluorophosphate salts (either ionic liquids or closely related) have been examined by crystallographic analysis, combined with the theoretical estimation of crystal-packing densities and lattice-interaction energies. Efficient close-packing of the ions in the crystalline states is observed, but there was no compelling evidence for specific directional hydrogen-bonding to the hexafluorophosphate anions or the formation of interstitial voids. The close-packing efficiency is supported by the theoretical calculation of ion volumes, crystal lattice energies, and packing densities, which correlated well with experimental data. The crystal density of the salts can be predicted accurately from the summation of free ion volumes and lattice energies calculated. Of even more importance for future work, on these and related salts, the solid-state density of 1,3-dialkylimidazolium hexafluorophosphate salts can be predicted with reasonable accuracy purely on the basis of on ab initio free ion volumes, and this allows prediction of lattice energies without necessarily requiring the crystal structures.
Resumo:
In this paper we describe experimental results on angularly resolved x-ray scatter from a sample of warm dense aluminium that has been created by double sided laser-driven shock compression. The experiment was carried out on the Central Laser Facility of the Rutherford Appleton Laboratory, using the VULCAN laser. The form of the angularly resolved scatter cross-section was compared with predictions based on a series of molecular dynamics simulations with an embedded atom potential, a Yukakwa potential and a bare Coulomb potential. The importance of screening is evident from the comparison and the embedded atom model seems to match experiment better than the Yukawa potential.