151 resultados para Computer networks Security measures
Resumo:
This paper investigates a queuing system for QoS optimization of multimedia traffic consisting of aggregated streams with diverse QoS requirements transmitted to a mobile terminal over a common downlink shared channel. The queuing system, proposed for buffer management of aggregated single-user traffic in the base station of High-Speed Downlink Packet Access (HSDPA), allows for optimum loss/delay/jitter performance for end-user multimedia traffic with delay-tolerant non-real-time streams and partially loss tolerant real-time streams. In the queuing system, the real-time stream has non-preemptive priority in service but the number of the packets in the system is restricted by a constant. The non-real-time stream has no service priority but is allowed unlimited access to the system. Both types of packets arrive in the stationary Poisson flow. Service times follow general distribution depending on the packet type. Stability condition for the model is derived. Queue length distribution for both types of customers is calculated at arbitrary epochs and service completion epochs. Loss probability for priority packets is computed. Waiting time distribution in terms of Laplace-Stieltjes transform is obtained for both types of packets. Mean waiting time and jitter are computed. Numerical examples presented demonstrate the effectiveness of the queuing system for QoS optimization of buffered end-user multimedia traffic with aggregated real-time and non-real-time streams.
Resumo:
Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. The "obvious" lower bounds of O(m) messages (m is the number of edges in the network) and O(D) time (D is the network diameter) are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results that show that even O(n) (n is the number of nodes in the network) is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms (except for the limited case of comparison algorithms, where it was also required that some nodes may not wake up spontaneously, and that D and n were not known).
We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (such algorithms should work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make anyuse of node's identities. To show that these bounds are tight, we present an O(m) messages algorithm. An O(D) time algorithm is known. A slight adaptation of our lower bound technique gives rise to an O(m) message lower bound for randomized broadcast algorithms.
An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. (The answer is known to be negative in the deterministic setting). We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.
Resumo:
We consider the problem of self-healing in reconfigurable networks e.g., peer-to-peer and wireless mesh networks. For such networks under repeated attack by an omniscient adversary, we propose a fully distributed algorithm, Xheal, that maintains good expansion and spectral properties of the network, while keeping the network connected. Moreover, Xheal does this while allowing only low stretch and degree increase per node. The algorithm heals global properties like expansion and stretch while only doing local changes and using only local information. We also provide bounds on the second smallest eigenvalue of the Laplacian which captures key properties such as mixing time, conductance, congestion in routing etc. Xheal has low amortized latency and bandwidth requirements. Our work improves over the self-healing algorithms Forgiving tree [PODC 2008] andForgiving graph [PODC 2009] in that we are able to give guarantees on degree and stretch, while at the same time preserving the expansion and spectral properties of the network.
Resumo:
This paper presents a scalable, statistical ‘black-box’ model for predicting the performance of parallel programs on multi-core non-uniform memory access (NUMA) systems. We derive a model with low overhead, by reducing data collection and model training time. The model can accurately predict the behaviour of parallel applications in response to changes in their concurrency, thread layout on NUMA nodes, and core voltage and frequency. We present a framework that applies the model to achieve significant energy and energy-delay-square (ED2) savings (9% and 25%, respectively) along with performance improvement (10% mean) on an actual 16-core NUMA system running realistic application workloads. Our prediction model proves substantially more accurate than previous efforts.
Resumo:
Inter-component communication has always been of great importance in the design of software architectures and connectors have been considered as first-class entities in many approaches [1][2][3]. We present a novel architectural style that is derived from the well-established domain of computer networks. The style adopts the inter-component communication protocol in a novel way that allows large scale software reuse. It mainly targets real-time, distributed, concurrent, and heterogeneous systems.
Resumo:
Heterogeneous computing technologies, such as multi-core CPUs, GPUs and FPGAs can provide significant performance improvements. However, developing applications for these technologies often results in coupling applications to specific devices, typically through the use of proprietary tools. This paper presents SHEPARD, a compile time and run-time framework that decouples application development from the target platform and enables run-time allocation of tasks to heterogeneous computing devices. Through the use of special annotated functions, called managed tasks, SHEPARD approximates a task's performance on available devices, and coupled with the approximation of current device demand, decides which device can satisfy the task with the lowest overall execution time. Experiments using a task parallel application, based on an in-memory database, demonstrate the opportunity for automatic run-time task allocation to achieve speed-up over a static allocation to a single specific device. © 2014 IEEE.
Resumo:
Plasma etch is a key process in modern semiconductor manufacturing facilities as it offers process simplification and yet greater dimensional tolerances compared to wet chemical etch technology. The main challenge of operating plasma etchers is to maintain a consistent etch rate spatially and temporally for a given wafer and for successive wafers processed in the same etch tool. Etch rate measurements require expensive metrology steps and therefore in general only limited sampling is performed. Furthermore, the results of measurements are not accessible in real-time, limiting the options for run-to-run control. This paper investigates a Virtual Metrology (VM) enabled Dynamic Sampling (DS) methodology as an alternative paradigm for balancing the need to reduce costly metrology with the need to measure more frequently and in a timely fashion to enable wafer-to-wafer control. Using a Gaussian Process Regression (GPR) VM model for etch rate estimation of a plasma etch process, the proposed dynamic sampling methodology is demonstrated and evaluated for a number of different predictive dynamic sampling rules. © 2013 IEEE.
Resumo:
We present a fully-distributed self-healing algorithm DEX, that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders - whose expansion properties hold deterministically - that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decide which nodes join and leave and at what time, and knows the past random choices made by the algorithm). Previous distributed expander constructions typically provide only probabilistic guarantees on the network expansion which rapidly degrade in a dynamic setting, in particular, the expansion properties can degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only O(log n) rounds and O(log n) messages are needed with high probability (n is the number of nodes currently in the network). The algorithm requires only a constant number of topology changes. Moreover, our algorithm allows for an efficient implementation and maintenance of a distributed hash table (DHT) on top of DEX, with only a constant additional overhead. Our results are a step towards implementing efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion) despite dynamic changes.
Resumo:
In this paper, we first provide a theoretical validation for a low-complexity transmit diversity algorithm which employs only one RF chain and a low-complexity switch for transmission. Our theoretical analysis is compared to the simulation results and proved to be accurate. We then apply the transmit diversity scheme to multiple-input and multiple-output (MIMO) systems with bit-interleaved coded modulation (BICM). © 2012 IEEE.