120 resultados para Complementary computing
Resumo:
Aim: To evaluate and summarize the current evidence on the effectiveness of complementary and alternative medicine for the management of low back pain and/or pelvic pain in pregnancy.
Background: International research demonstrates that 25-30% of women use complementary and alternative medicine to manage low back and pelvic pain in pregnancy without robust evidence demonstrating its effectiveness.
Design: A systematic review of randomized controlled trials to determine the effectiveness of complementary and alternative medicine for low back and/or pelvic pain in pregnancy.
Data Sources: Cochrane library (1898-2013), PubMed (1996-2013), MEDLINE (1946-2013), AMED (1985-2013), Embase (1974-2013), Cinahl (1937-2013), Index to Thesis (1716-2013) and Ethos (1914-2013).
Review Methods: Selected studies were written in English, randomized controlled trials, a group 1 or 2 therapy and reported pain reduction as an outcome measure. Study quality was reviewed using Risk of Bias and evidence strength the Cochrane Grading of Recommendations and Development Evaluation Tool.
Results: Eight studies were selected for full review. Two acupuncture studies with low risk of bias showed both clinically important changes and statistically significant results. There was evidence of effectiveness for osteopathy and chiropractic. However, osteopathy and chiropractic studies scored high for risk of bias. Strength of the evidence across studies was very low.
Conclusion: There is limited evidence supporting the use of general CAM for managing pregnancy-related low back and/or pelvic pain. However, the restricted availability of high-quality studies, combined with the very low evidence strength, makes it impossible to make evidence-based recommendations for practice.
Resumo:
Embedded memories account for a large fraction of the overall silicon area and power consumption in modern SoC(s). While embedded memories are typically realized with SRAM, alternative solutions, such as embedded dynamic memories (eDRAM), can provide higher density and/or reduced power consumption. One major challenge that impedes the widespread adoption of eDRAM is that they require frequent refreshes potentially reducing the availability of the memory in periods of high activity and also consuming significant amount of power due to such frequent refreshes. Reducing the refresh rate while on one hand can reduce the power overhead, if not performed in a timely manner, can cause some cells to lose their content potentially resulting in memory errors. In this paper, we consider extending the refresh period of gain-cell based dynamic memories beyond the worst-case point of failure, assuming that the resulting errors can be tolerated when the use-cases are in the domain of inherently error-resilient applications. For example, we observe that for various data mining applications, a large number of memory failures can be accepted with tolerable imprecision in output quality. In particular, our results indicate that by allowing as many as 177 errors in a 16 kB memory, the maximum loss in output quality is 11%. We use this failure limit to study the impact of relaxing reliability constraints on memory availability and retention power for different technologies.
Resumo:
The worldwide scarcity of women studying or employed in ICT, or in computing related disciplines, continues to be a topic of concern for industry, the education sector and governments. Within Europe while females make up 46% of the workforce only 17% of IT staff are female. A similar gender divide trend is repeated worldwide, with top technology employers in Silicon Valley, including Facebook, Google, Twitter and Apple reporting that only 30% of the workforce is female (Larson 2014). Previous research into this gender divide suggests that young women in Secondary Education display a more negative attitude towards computing than their male counterparts. It would appear that the negative female perception of computing has led to representatively low numbers of women studying ICT at a tertiary level and consequently an under representation of females within the ICT industry. The aim of this study is to 1) establish a baseline understanding of the attitudes and perceptions of Secondary Education pupils in regard to computing and 2) statistically establish if young females in Secondary Education really do have a more negative attitude towards computing.
Resumo:
The increasing complexity and scale of cloud computing environments due to widespread data centre heterogeneity makes measurement-based evaluations highly difficult to achieve. Therefore the use of simulation tools to support decision making in cloud computing environments to cope with this problem is an increasing trend. However the data required in order to model cloud computing environments with an appropriate degree of accuracy is typically large, very difficult to collect without some form of automation, often not available in a suitable format and a time consuming process if done manually. In this research, an automated method for cloud computing topology definition, data collection and model creation activities is presented, within the context of a suite of tools that have been developed and integrated to support these activities.
Resumo:
Elementary computing operations can be arranged within molecules so that problems in chemical, biochemical, and biological situations can be addressed. Problems that are found in small and/or living spaces, where the corresponding semiconductor logic devices cannot operate conveniently, are particularly amenable to this approach. The visualization and monitoring of intracellular species is one such category. Problems in medical diagnostics and therapy form additional categories. Chemists and biologists employ chemical synthesis and molecular biology techniques to build molecular logic devices. The photochemical approach to molecular logic devices is particularly prevalent. The fluorescent photoinduced electron transfer (PET) switching principle is particularly useful for designing logic functions into small molecules.
Resumo:
Mental health social workers have a central role in providing support to people with mental health problems and in the use of coercion aimed at dealing with risk. Mental health services have traditionally focused on monitoring symptoms and ascertaining the risks people may present to themselves and/or others. This well-intentioned but negative focus on deficits has contributed to stigma, discrimination and exclusion experienced by service users. Emerging understandings of risk also suggest that our inability to accurately predict the future makes risk a problematic foundation for compulsory intervention. It is therefore argued that alternative approaches are needed to make issues of power and inequality transparent. This article focuses on two areas of practice: the use of recovery based approaches, which promote supported decision making and inclusion; and the assessment of a person’s ability to make decisions, their mental capacity, as a less discriminatory gateway criterion than risk for compulsory intervention.
Resumo:
This research presents a fast algorithm for projected support vector machines (PSVM) by selecting a basis vector set (BVS) for the kernel-induced feature space, the training points are projected onto the subspace spanned by the selected BVS. A standard linear support vector machine (SVM) is then produced in the subspace with the projected training points. As the dimension of the subspace is determined by the size of the selected basis vector set, the size of the produced SVM expansion can be specified. A two-stage algorithm is derived which selects and refines the basis vector set achieving a locally optimal model. The model expansion coefficients and bias are updated recursively for increase and decrease in the basis set and support vector set. The condition for a point to be classed as outside the current basis vector and selected as a new basis vector is derived and embedded in the recursive procedure. This guarantees the linear independence of the produced basis set. The proposed algorithm is tested and compared with an existing sparse primal SVM (SpSVM) and a standard SVM (LibSVM) on seven public benchmark classification problems. Our new algorithm is designed for use in the application area of human activity recognition using smart devices and embedded sensors where their sometimes limited memory and processing resources must be exploited to the full and the more robust and accurate the classification the more satisfied the user. Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm. This work builds upon a previously published algorithm specifically created for activity recognition within mobile applications for the EU Haptimap project [1]. The algorithms detailed in this paper are more memory and resource efficient making them suitable for use with bigger data sets and more easily trained SVMs.
Resumo:
In the reinsurance market, the risks natural catastrophes pose to portfolios of properties must be quantified, so that they can be priced, and insurance offered. The analysis of such risks at a portfolio level requires a simulation of up to 800 000 trials with an average of 1000 catastrophic events per trial. This is sufficient to capture risk for a global multi-peril reinsurance portfolio covering a range of perils including earthquake, hurricane, tornado, hail, severe thunderstorm, wind storm, storm surge and riverine flooding, and wildfire. Such simulations are both computation and data intensive, making the application of high-performance computing techniques desirable.
In this paper, we explore the design and implementation of portfolio risk analysis on both multi-core and many-core computing platforms. Given a portfolio of property catastrophe insurance treaties, key risk measures, such as probable maximum loss, are computed by taking both primary and secondary uncertainties into account. Primary uncertainty is associated with whether or not an event occurs in a simulated year, while secondary uncertainty captures the uncertainty in the level of loss due to the use of simplified physical models and limitations in the available data. A combination of fast lookup structures, multi-threading and careful hand tuning of numerical operations is required to achieve good performance. Experimental results are reported for multi-core processors and systems using NVIDIA graphics processing unit and Intel Phi many-core accelerators.
Resumo:
Approximate execution is a viable technique for environments with energy constraints, provided that applications are given the mechanisms to produce outputs of the highest possible quality within the available energy budget. This paper introduces a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows developers to structure the computation in different tasks, and to express the relative importance of these tasks for the quality of the end result. For non-significant tasks, the developer can also supply less costly, approximate versions. The target energy consumption for a given execution is specified when the application is launched. A significance-aware runtime system employs an application-specific analytical energy model to decide how many cores to use for the execution, the operating frequency for these cores, as well as the degree of task approximation, so as to maximize the quality of the output while meeting the user-specified energy constraints. Evaluation on a dual-socket 16-core Intel platform using 9 benchmark kernels shows that the proposed framework picks the optimal configuration with high accuracy. Also, a comparison with loop perforation (a well-known compile-time approximation technique), shows that the proposed framework results in significantly higher quality for the same energy budget.
Resumo:
This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner that directly relates to student learning but can still be linked forward into employment. The paper tests the premise that developing employability skills early within the curriculum will result in improved student engagement and learning within later modules. The paper concludes that embedding employer participation within first-year models can help relate a distant notion of employability into something of more immediate relevance in terms of how students can best approach learning. Further, by enhancing employability skills early within the curriculum, it becomes possible to improve academic attainment within later modules.
Resumo:
The circumstances in Colombo, Sri Lanka, and in Belfast, Northern Ireland, which led to a) the generalization of luminescent PET (photoinduced electron transfer) sensing/switching as a design tool, b) the construction of a market-leading blood electrolyte analyzer and c) the invention of molecular logic-based computation as an experimental field, are delineated. Efforts to extend the philosophy of these approaches into issues of small object identification, nanometric mapping, animal visual perception and visual art are also outlined.
Resumo:
Partially ordered preferences generally lead to choices that do not abide by standard expected utility guidelines; often such preferences are revealed by imprecision in probability values. We investigate five criteria for strategy selection in decision trees with imprecision in probabilities: “extensive” Γ-maximin and Γ-maximax, interval dominance, maximality and E-admissibility. We present algorithms that generate strategies for all these criteria; our main contribution is an algorithm for Eadmissibility that runs over admissible strategies rather than over sets of probability distributions.