193 resultados para Chicken Retina
Resumo:
PURPOSE: MicroRNAs (miRNAs) play a global role in regulating gene expression and have important tissue-specific functions. Little is known about their role in the retina. The purpose of this study was to establish the retinal expression of those miRNAs predicted to target genes involved in vision. METHODS: miRNAs potentially targeting important "retinal" genes, as defined by expression pattern and implication in disease, were predicted using a published algorithm (TargetScan; Envisioneering Medical Technologies, St. Louis, MO). The presence of candidate miRNAs in human and rat retinal RNA was assessed by RT-PCR. cDNA levels for each miRNA were determined by quantitative PCR. The ability to discriminate between miRNAs varying by a single nucleotide was assessed. The activity of miR-124 and miR-29 against predicted target sites in Rdh10 and Impdh1 was tested by cotransfection of miRNA mimics and luciferase reporter plasmids. RESULTS: Sixty-seven miRNAs were predicted to target one or more of the 320 retinal genes listed herein. All 11 candidate miRNAs tested were expressed in the retina, including miR-7, miR-124, miR135a, and miR135b. Relative levels of individual miRNAs were similar between rats and humans. The Rdh10 3'UTR, which contains a predicted miR-124 target site, mediated the inhibition of luciferase activity by miR-124 mimics in cell culture. CONCLUSIONS: Many miRNAs likely to regulate genes important for retinal function are present in the retina. Conservation of miRNA retinal expression patterns from rats to humans supports evidence from other tissues that disruption of miRNAs is a likely cause of a range of visual abnormalities.
Resumo:
Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm-2 and 5.02 mm-2 for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm-2 and 76.36 mm-2 for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.
Resumo:
Background: MicroRNAs (miRNAs) are small RNA molecules (similar to 22 nucleotides) which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression.
Results: Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs), developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed.
Conclusions: This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease. Conversely, manipulation of their expression could potentially be used as a therapeutic tool in the future.
Resumo:
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.
The formation of advanced glycation end products (AGEs) is a natural function of ageing but accumulation of these adducts also represents a key pathophysiological event in a range of important human diseases. AGEs act as mediators of neurodegeneration, induce irreversible changes in the extracellular matrix, vascular dysfunction and pro-inflammatory signalling. Since many cells and tissues of the eye are profoundly influenced by such processes, it is fitting that advanced glycation is now receiving considerable attention as a possible pathogenic factor in visual disorders.
This review presents the current evidence for a pathogenic role for AGEs and activation of the receptor for AGEs (RAGE) in initiation and progression of retinal disease. It draws upon the clinical and experimental literature and highlights the opportunities for further research that would definitively establish these adducts as important instigators of retinal disease. The therapeutic potential for novel agents that can ameliorate AGE formation of attenuate RAGE signalling in the retina is also discussed.
Resumo:
Breakdown of the inner blood-retinal barrier (iBRB) occurs early in diabetes and is central to the development of sight-threatening diabetic macular edema (DME) as retinopathy progresses. In the current study, we examined how advanced glycation end products (AGEs) forming early in diabetes could modulate vasopermeability factor expression in the diabetic retina and alter inter-endothelial cell tight junction (TJ) integrity leading to iBRB dysfunction. We also investigated the potential for an AGE inhibitor to prevent this acute pathology and examined a role of the AGE-binding protein galectin-3 (Gal-3) in AGE-mediated cell retinal pathophysiology. Diabetes was induced in C57/BL6 wild-type (WT) mice and in Gal-3(-/-) transgenic mice. Blood glucose was monitored and AGE levels were quantified by ELISA and immunohistochemistry. The diabetic groups were subdivided, and one group was treated with the AGE-inhibitor pyridoxamine (PM) while separate groups of WT and Gal-3(-/-) mice were maintained as nondiabetic controls. iBRB integrity was assessed by Evans blue assay alongside visualisation of TJ protein complexes via occludin-1 immunolocalization in retinal flat mounts. Retinal expression levels of the vasopermeability factor VEGF were quantified using real-time RT-PCR and ELISA. WT diabetic mice showed significant AGE -immunoreactivity in the retinal microvasculature and also showed significant iBRB breakdown (P < .005). These diabetics had higher VEGF mRNA and protein expression in comparison to controls (P < .01). PM-treated diabetics had normal iBRB function and significantly reduced diabetes-mediated VEGF expression. Diabetic retinal vessels showed disrupted TJ integrity when compared to controls, while PM-treated diabetics demonstrated near-normal configuration. Gal-3(-/-) mice showed significantly less diabetes-mediated iBRB dysfunction, junctional disruption, and VEGF expression changes than their WT counterparts. The data suggests an AGE-mediated disruption of iBRB via upregulation of VEGF in the diabetic retina, possibly modulating disruption of TJ integrity, even after acute diabetes. Prevention of AGE formation or genetic deletion of Gal-3 can effectively prevent these acute diabetic retinopathy changes.
Resumo:
OBJECTIVE:
To elucidate the contribution of environmental versus genetic factors to the significant losses in visual function associated with normal aging.
DESIGN:
A classical twin study.
PARTICIPANTS:
Forty-two twin pairs (21 monozygotic and 21 dizygotic; age 57-75 years) with normal visual acuity recruited through the Australian Twin Registry.
METHODS:
Cone function was evaluated by establishing absolute cone contrast thresholds to flicker (4 and 14 Hz) and isoluminant red and blue colors under steady state adaptation. Adaptation dynamics were determined for both cones and rods. Bootstrap resampling was used to return robust intrapair correlations for each parameter.
MAIN OUTCOME MEASURES:
Psychophysical thresholds and adaptational time constants.
RESULTS:
The intrapair correlations for all color and flicker thresholds, as well as cone absolute threshold, were significantly higher in monozygotic compared with dizygotic twin pairs (P<0.05). Rod absolute thresholds (P = 0.28) and rod and cone recovery rate (P = 0.83; P = 0.79, respectively) did not show significant differences between monozygotic and dizygotic twins in their intrapair correlations, indicating that steady-state cone thresholds and flicker thresholds have a marked genetic contribution, in contrast with rod thresholds and adaptive processes, which are influenced more by environmental factors over a lifetime.
CONCLUSIONS:
Genes and the environment contribute differently to important neuronal processes in the retina and the role they may play in the decline in visual function as we age. Consequently, retinal structures involved in rod thresholds and adaptive processes may be responsive to appropriate environmental manipulation. Because the functions tested are commonly impaired in the early stages of age-related macular degeneration, which is known to have a multifactorial etiology, this study supports the view that pathogenic pathways early in the disease may be altered by appropriate environmental intervention.
Resumo:
Background: The underlying pathways that drive retinal neurogenesis and synaptogenesis are still relatively poorly understood. Protein expression analysis can provide direct insight into these complex developmental processes. The aim of this study was therefore to employ proteomic analysis to study the developing chick retina throughout embryonic (E) development commencing at day 12 through 13, 17, 19 and post-hatch (P) 1 and 33 days.
Results: 2D proteomic and mass spectrometric analysis detected an average of 1514 spots per gel with 15 spots demonstrating either modulation or constitutive expression identified via MS. Proteins identified included alpha and beta-tubulin, alpha enolase, B-creatine kinase, gamma-actin, platelet-activating factor (PAF), PREDICTED: similar to TGF-beta interacting protein 1, capping protein (actin filament muscle Z line), nucleophosmin 1 (NPM1), dimethylarginine dimethylaminohydrolase, triosphoaphate isomerase, DJ1, stathmin, fatty acid binding protein 7 (FABP7/B-FABP), beta-synuclein and enhancer of rudimentary homologue.
Conclusion: This study builds upon previous proteomic investigations of retinal development and represents the addition of a unique data set to those previously reported. Based on reported bioactivity some of the identified proteins are most likely to be important to normal retinal development in the chick. Continued analysis of the dynamic protein populations present at the early stages and throughout retinal development will increase our understanding of the molecular events underpinning retinogenesis.
Resumo:
PURPOSE
To investigate changes in gene expression during aging of the retina in the mouse.
METHODS
Total RNA was extracted from the neuroretina of young (3-month-old) and old (20-month-old) mice and processed for microarray analysis. Age-related, differentially expressed genes were assessed by the empiric Bayes shrinkagemoderated t-statistics method. Statistical significance was based on dual criteria of a ratio of change in gene expression >2 and a P < 0.01. Differential expression in 11 selected genes was further verified by real-time PCR. Functional pathways involved in retinal ageing were analyzed by an online software package (DAVID-2008) in differentially expressed gene lists. Age-related changes in differential expression in the identified retinal molecular pathways were further confirmed by immunohistochemical staining of retinal flat mounts and retinal cryosections.
RESULTS
With ageing of the retina, 298 genes were upregulated and 137 genes were downregulated. Functional annotation showed that genes linked to immune responses (Ir genes) and to tissue stress/injury responses (TS/I genes) were most likely to be modified by ageing. The Ir genes affected included those regulating leukocyte activation, chemotaxis, endocytosis, complement activation, phagocytosis, and myeloid cell differentiation, most of which were upregulated, with only a few downregulated. Increased microglial and complement activation in the aging retina was further confirmed by confocal microscopy of retinal tissues. The most strongly upregulated gene was the calcitonin receptor (Calcr; >40-fold in old versus young mice).
CONCLUSIONS
The results suggest that retinal ageing is accompanied by activation of gene sets, which are involved in local inflammatory responses. A modified form of low-grade chronic inflammation (para-inflammation) characterizes these aging changes and involves mainly the innate immune system. The marked upregulation of Calcr in ageing mice most likely reflects this chronic inflammatory/stress response, since calcitonin is a known systemic biomarker of inflammation/sepsis. © Association for Research in Vision and Ophthalmology.
Resumo:
To investigate the effect(s) of cataract surgery on the expression of pro-inflammatory genes and proteins in the retina using an experimental rodent model. An extracapsular lens extraction was performed in one eye of C57BL/6 mice (n=24); the contralateral unoperated eyes (n =24) as well as eyes from unoperated animals (n = 9) served as controls. The neurosensory retina and retinal pigment epithelium (RPE)/choroid were collected postoperatively. Expression of genes involved in the acute inflammatory/ injury response, including IL-1ß, fibroblast growth factor, transforming growth factor ß, chemokine CCL2, SDF-1, and complements C3, C4, and factor B (CFB), were examined by real-time PCR and, selectively, by immunohistochemistry. The expression of IL-1 ß and CCL2 genes was markedly upregulated (>0-fold, P >0.01) in the neurosensory retina 30 minutes postoperatively and maintained for the 2-week postoperative period of observation; IL-1 ß expression was also upregulated in RPE/choroid. The expression of complement C3 (>-fold) and CFB (>0-fold) genes in the neurosensory retina was also significantly upregulated (P
Resumo:
Drusen are small focal extracellular deposits underneath the retina, visible ophthalmoscopically as yellow dots. The more hard drusen there are, the greater the risk of developing soft drusen and retinal pigmentary changes, which in turn increase the risk of developing advanced age-related macular degeneration. Much remains to be discovered about drusen. For the patient with drusen, basic advice on diet and smoking and maintenance of a high level of vigilance for visual changes is appropriate management. © The Author 2009. Published by Oxford University Press [on behalf of the British Geriatrics Society]. All rights reserved.
Resumo:
Purpose: To use preferential hyperacuity perimetry to obtain a quantitative measure of central visual field distortion that would aid in the monitoring of functional responsiveness to ranibizumab treatment.
Resumo:
Purpose. The authors conducted an in vitro investigation of the role of Ca2+-dependent signaling in vascular endothelial growth factor (VEGF)-induced angiogenesis in the retina.
Methods. Bovine retinal endothelial cells (BRECs) were stimulated with VEGF in the presence or absence of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM; intracellular Ca2+ chelator), U73122 (phospholipase C (PLC) inhibitor), xestospongin C (Xe-C), and 2-aminoethoxydiphenyl borate (2APB) (inhibitors of inositol-1,4,5 triphosphate (IP3) signaling). Intracellular Ca2+ concentration ([Ca2+]i) was estimated using fura-2 Ca2+ microfluorometry, Akt phosphorylation quantified by Western blot analysis, and angiogenic responses assessed using cell migration, proliferation, tubulogenesis, and sprout formation assays. The effects of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 were also evaluated on VEGF-induced Akt signaling and angiogenic activity.
Results. Stimulation of BRECs with 25 ng/mL VEGF induced a biphasic increase in [Ca2+]i, with an initial transient peak followed by a sustained plateau phase. VEGF-induced [Ca2+]i increases were almost completely abolished by pretreating the cells with BAPTA-AM, U73122, Xe-C, or 2APB. These agents also inhibited VEGF-induced phosphorylation of Akt, cell migration, proliferation, tubulogenesis, and sprouting angiogenesis. KN93 was similarly effective at blocking the VEGF-induced activation of Akt and angiogenic responses.
Conclusions. VEGF increases [Ca2+]i in BRECs through activation of the PLC-IP3 signal transduction pathway. VEGF-induced phosphorylation of the proangiogenic protein Akt is critically dependent on this increase in [Ca2+]i and the subsequent activation of CaMKII. Pharmacologic inhibition of Ca2+-mediated signaling in retinal endothelial cells blocks VEGF-induced angiogenic responses. These results suggest that the PLC/IP3/Ca2+/CaMKII signaling pathway may be a rational target for the treatment of angiogenesis-related disorders of the eye.
Resumo:
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.
Resumo:
Purpose. Neovascularization occurs in response to tissue ischemia and growth factor stimulation. In ischemic retinopathies, however, new vessels fail to restore the hypoxic tissue; instead, they infiltrate the transparent vitreous. In a model of oxygen-induced retinopathy (OIR), TNFa and iNOS, upregulated in response to tissue ischemia, are cytotoxic and inhibit vascular repair. The aim of this study was to investigate the mechanism for this effect.
Methods. Wild-type C57/BL6 (WT) and TNFa-/- mice were subjected to OIR by exposure to 75% oxygen (postnatal days 7–12). The retinas were removed during the hypoxic phase of the model. Retinal cell death was determined by TUNEL staining, and the microglial cells were quantified after Z-series capture with a confocal microscope. In situ peroxynitrite and superoxide were measured by using the fluorescent dyes DCF and DHE. iNOS, nitrotyrosine, and arginase were analyzed by real-time PCR, Western blot analysis, and activity determined by radiolabeled arginine conversion. Astrocyte coverage was examined after GFAP immunostaining.
Results. The TNFa-/- animals displayed a significant reduction in TUNEL-positive apoptotic cells in the inner nuclear layer of the avascular retina compared with that in the WT control mice. The reduction coincided with enhanced astrocytic survival and an increase in microglial cells actively engaged in phagocytosing apoptotic debris that displayed low ROS, RNS, and NO production and high arginase activity.
Conclusions. Collectively, the results suggest that improved vascular recovery in the absence of TNFa is associated with enhanced astrocyte survival and that both phenomena are dependent on preservation of microglial cells that display an anti-inflammatory phenotype during the early ischemic phase of OIR.
Resumo:
Rapid orientating movements of the eyes are believed to be controlled ballistically. The mechanism underlying this control is thought to involve a comparison between the desired displacement of the eye and an estimate of its actual position (obtained from the integration of the eye velocity signal). This study shows, however, that under certain circumstances fast gaze movements may be controlled quite differently and may involve mechanisms which use visual information to guide movements prospectively. Subjects were required to make large gaze shifts in yaw towards a target whose location and motion were unknown prior to movement onset. Six of those tested demonstrated remarkable accuracy when making gaze shifts towards a target that appeared during their ongoing movement. In fact their level of accuracy was not significantly different from that shown when they performed a 'remembered' gaze shift to a known stationary target (F-3,F-15 = 0.15, p > 0.05). The lack of a stereotypical relationship between the skew of the gaze velocity profile and movement duration indicates that on-line modifications were being made. It is suggested that a fast route from the retina to the superior colliculus could account for this behaviour and that models of oculomotor control need to be updated.