108 resultados para CHA-252
Resumo:
Objective: To assess the effect of provision of free glasses on academic performance in rural Chinese children with myopia. Design: Cluster randomized, investigator masked, controlled trial.Setting 252 primary schools in two prefectures in western China, 2012-13. Participants: 3177 of 19 934 children in fourth and fifth grades (mean age 10.5 years) with visual acuity <6/12 in either eye without glasses correctable to >6/12 with glasses. 3052 (96.0%) completed the study.Interventions Children were randomized by school (84 schools per arm) to one of three interventions at the beginning of the school year: prescription for glasses only (control group), vouchers for free glasses at a local facility, or free glasses provided in class. Main outcome measures: Spectacle wear at endline examination and end of year score on a specially designed mathematics test, adjusted for baseline score and expressed in standard deviations. Results: Among 3177 eligible children, 1036 (32.6%) were randomized to control, 988 (31.1%) to vouchers, and 1153 (36.3%) to free glasses in class. All eligible children would benefit from glasses, but only 15% wore them at baseline. At closeout glasses wear was 41% (observed) and 68% (self reported) in the free glasses group, and 26% (observed) and 37% (self reported) in the controls. Effect on test score was 0.11 SD (95% confidence interval 0.01 to 0.21) when the free glasses group was compared with the control group. The adjusted effect of providing free glasses (0.10, 0.002 to 0.19) was greater than parental education (0.03, −0.04 to 0.09) or family wealth (0.01, −0.06 to 0.08). This difference between groups was significant, but was smaller than the prespecified 0.20 SD difference that the study was powered to detect. Conclusions: The provision of free glasses to Chinese children with myopia improves children’s performance on mathematics testing to a statistically significant degree, despite imperfect compliance, although the observed difference between groups was smaller than the study was originally designed to detect. Myopia is common and rarely corrected in this setting. Trial Registration: Current Controlled Trials ISRCTN03252665.
Resumo:
1. We analysed 41 years of data (1968–2008) from Blelham Tarn, U.K., to determine the consequences of eutrophication and climate warming on hypolimnetic dissolved oxygen (DO).
2. The establishment of thermal stratification was strongly related to the onset of DO depletion in the lower hypolimnion. As a result of a progressively earlier onset of stratification and later overturn, the duration of stratification increased by 38 ± 8 days over the 41 years.
3. The observed rate of volumetric hypolimnetic oxygen depletion (VHODobs) ranged from 0.131 to 0.252 g O2 m−3 per day and decreased significantly over the study period, despite the increase in the mean chlorophyll a (Chl a) concentration in the growing season. The vertical transport of DO represented from 0 to 30% of VHODobs, while adjustments for interannual differences in hypolimnetic temperature were less important, ranging from −11 to 9% of VHODobs.
4. The mean wind speed during May made the strongest significant contribution to the variation in VHODobs. VHODobs adjusted for the vertical transport of DO and hypolimnetic temperature differences, VHODadj, was significantly related to the upper mixed layer Chl a concentration during spring.
5. Hypolimnetic anoxia (HA) ranged from 27 to 168 days per year and increased significantly over time, which undoubtedly had negative ecological consequences for the lake.
6. In similar small temperate lakes, the negative effects of eutrophication on hypolimnetic DO are likely to be exacerbated by changes in lake thermal structure brought about by a warming climate, which may undermine management efforts to alleviate the effects of anthropogenic eutrophication.
Resumo:
Energy consumption is an important concern in modern multicore processors. The energy consumed by a multicore processor during the execution of an application can be minimized by tuning the hardware state utilizing knobs such as frequency, voltage etc. The existing theoretical work on energy minimization using Global DVFS (Dynamic Voltage and Frequency Scaling), despite being thorough, ignores the time and the energy consumed by the CPU on memory accesses and the dynamic energy consumed by the idle cores. This article presents an analytical energy-performance model for parallel workloads that accounts for the time and the energy consumed by the CPU chip on memory accesses in addition to the time and energy consumed by the CPU on CPU instructions. In addition, the model we present also accounts for the dynamic energy consumed by the idle cores. The existing work on global DVFS for parallel workloads shows that using a single frequency for the entire duration of a parallel application is not energy optimal and that varying the frequency according to the changes in the parallelism of the workload can save energy. We present an analytical framework around our energy-performance model to predict the operating frequencies (that depend upon the amount of parallelism) for global DVFS that minimize the overall CPU energy consumption. We show how the optimal frequencies in our model differ from the optimal frequencies in a model that does not account for memory accesses. We further show how the memory intensity of an application affects the optimal frequencies.