183 resultados para CALCULATED OSCILLATOR-STRENGTHS
Resumo:
Aims. In this paper we report electron impact collision strengths and excitation rates for transitions among the lowest 89 levels of Ni XIX.
Methods. The Dirac atomic R-matrix code (DARC) is adopted for the calculations of collision strengths and subsequently the effective collision strengths.
Results. Collision strengths for resonance transitions among 89 levels arising from the (1s2) 2s22p6, 2s22p53$\ell$, 2s2p63$\ell$, 2s22p54$\ell$, and 2s2p64$\ell$ configurations of Ni XIX are reported over a wide energy range below 250 Ryd. Additionally, effective collision strengths for all 3916 transitions among the 89 levels are listed over a wide temperature range below 107 K. Comparisons are made among different calculations and the accuracy of the data is assessed. Finally, comparisons between theoretical and experimental intensity ratios of some prominent lines of Ni XIX are discussed.
Resumo:
Collision strengths for transitions among the energetically lowest 134 levels of the (1s(2)2s(2)) 2p(6)3l, 2p(5)3s(2), 2p(5)3s3p, 2p(5)3s3d, 2p(5)3p3d and 2p(5)3d(2) configurations of Fe XVI are computed, over an electron energy range below 570 Ryd, using the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC). All partial waves with J
Resumo:
In this paper we present calculations of electron impact excitation collision strengths for transitions among the 89 fine-structure levels of the 2S(2) 2p(,)(6) 2S(2) 2P(5) 3l, 2s(2)p(6) 3l, 2s(2) 2p(5) 4l, and 2s(2)p(6) 2l configurations of Ni XIX, for which flexible atomic code (FAC) has been adopted. Comparisons are made with the earlier available results in the literature, and the anomalies observed have been discussed.
Resumo:
In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.
Resumo:
The Strengths and Difficulties Questionnaire (SDQ) is a widely used 25-item screening test for emotional and behavioral problems in children and adolescents. This study attempted to critically examine the factor structure of the adolescent self-report version. As part of an ongoing longitudinal cohort study, a total of 3,753 pupils completed the SDQ when aged 12. Both three- and five-factor exploratory factor analysis models were estimated. A number of deviations from the hypothesized SDQ structure were observed, including a lack of unidimensionality within particular subscales, cross-loadings, and items failing to load on any factor. Model fit of the confirmatory factor analysis model was modest, providing limited support for the hypothesized five-component structure. The analyses suggested a number of weaknesses within the component structure of the self-report SDQ, particularly in relation to the reverse-coded items.
Resumo:
Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the View the MathML source, and 2p23ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R -matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range View the MathML source, obtained from the nonresonant collision strengths from the Flexible Atomic Code.
Resumo:
Effective collision strengths for forbidden transitions among the five energetically lowest fine-structure levels of O ii are calculated in the Breit-Pauli approximation using the R-matrix method. Results are presented for the electron temperature range 100-100 000 K. The accuracy of the calculations is evaluated via the use of different types of radial orbital sets and a different configuration expansion basis for the target wavefunctions. A detailed assessment of previous available data is given, and erroneous results are highlighted. Our results reconfirm the validity of the original Seaton and Osterbrock scaling for the optical O ii ratio, a matter of some recent controversy. Finally, we present plasma diagnostic diagrams using the best collision strengths and transition probabilities.
Resumo:
In this paper. we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d(6)4s and 3d(7) even parity configuration states to the 3d(6)4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7) and 3d(6)4p were included in the wave-function representation of the target, including all doublet. quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a "top up" procedure.
Resumo:
Context. Considerable demand exists for electron excitation data for Ni ii, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims. In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact ex- citation of Ni ii. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of Ni ii. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30–100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date.Methods. The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model – 3d9 , 3d8 4s, 3d8 4p, 3d7 4s2 and 3d7 4s4p – giving rise to a sophisticated 295 j j-level, 1930 coupled channel scattering problem. Results. Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others.
Resumo:
Context. Absorption or emission lines of Cr II are observed in a wide variety of astrophysical spectra and accurate atomic data are urgently needed to interpret these lines. Many of these data are impossible to measure experimentally and a full theoretical treatment is the only means by which these data can be obtained.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Cr II for forbidden transitions among the lowest-lying 74 fine-structure levels. Effective collision strengths have been computed for 18 individual electron temperatures of astrophysical importance, ranging from 2000-100 000 K.
Methods. The parallel suite of R-matrix packages, RMATRX II, which has recently been extended to allow for the inclusion of relativistic effects, has been used in the present work to compute the collision strengths and effective collision strengths for electron-impact excitation of Cr II. We concentrate in this publication on low-lying forbidden lines among the lowest 74 jj fine-structure levels with configurations 3d(5) and 3d(4)4s, although atomic data has been evaluated for all 39 060 transitions among the 280 jj levels of configurations 3d(5), 3d(4)4s and 3d(4)4p. This work constitutes the largest evaluation ever performed for this ion involving 1932 coupled channels.
Results. Collision and effective collision strengths are presented for all transitions among the lowest 74 J pi states of Cr II and comparisons made with the work of Bautista et al. (2009). While the effective collision strengths agree well for some transitions, significant discrepancies exist for others. We believe that the present atomic data represents the most accurate, most sophisticated and most complete data set for electron-impact excitation of Cr II and we would recommend them to astrophysicists and plasma physicists in their application work. We would expect that the effective collision strengths presented for the important low-lying forbidden lines are accurate to within 15%.