136 resultados para Broadband spectral shaping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.

The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.

This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.

The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SN 2004et is one of the nearest and best-observed Type IIP supernovae, with a progenitor detection as well as good photometric and spectroscopic observational coverage well into the nebular phase. Based on nucleosynthesis from stellar evolution/explosion models we apply spectral modeling to analyze its 140-700 day evolution from ultraviolet to mid-infrared. We find a M_ZAMS= 15 Msun progenitor star (with an oxygen mass of 0.8 Msun) to satisfactorily reproduce [O I] 6300, 6364 {\AA} and other emission lines of carbon, sodium, magnesium, and silicon, while 12 Msun and 19 Msun models under- and overproduce most of these lines, respectively. This result is in fair agreement with the mass derived from the progenitor detection, but in disagreement with hydrodynamical modeling of the early-time light curve. From modeling of the mid-infrared iron-group emission lines, we determine the density of the "Ni-bubble" to rho(t) = 7E-14*(t/100d)^-3 g cm^-3, corresponding to a filling factor of f = 0.15 in the metal core region (V = 1800 km/s). We also confirm that silicate dust, CO, and SiO emission are all present in the spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambisonics is spatial audio technique that attempts to recreate a physical sound field over as large an area as possible. Higher Order Ambisonic systems modelled with near field loudspeakers in free field as well as in a simulated room are investigated. The influence of reflections on the image quality is analysed objectively for both a studio-sized and large reproduction environment using the relative intensity of the reproduced sound field. The results of a simulated enclosed HOA system in the studio-sized room are compared to sound field measurements in the reproduced area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present TARDIS-an open-source code for rapid spectral modelling of supernovae (SNe). Our goal is to develop a tool that is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. This can be used to analyse the growing number of highquality SN spectra being obtained by transient surveys. The code uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It has a modular design to facilitate the implementation of a range of physical approximations that can be compared to assess both accuracy and computational expediency. This will allow users to choose a level of sophistication appropriate for their application. Here, we describe the operation of the code and make comparisons with alternative radiative transfer codes of differing levels of complexity (SYN++, PYTHON and ARTIS). We then explore the consequence of adopting simple prescriptions for the calculation of atomic excitation, focusing on four species of relevance to Type Ia SN spectra-Si II, SII, MgII and Ca II. We also investigate the influence of three methods for treating line interactions on our synthetic spectra and the need for accurate radiative rate estimates in our scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the role of shared spaces in divided cities in promoting future sustainable communities and spaces described as inclusive to all. It addresses the current challenges that prevent such inclusiveness and suggests future trends of its development to be of benefit to the wider city community. It explains how spaces in divided cities are carved up into perceived ownerships and territorialized areas, which increases tension on the shared space between territories; the control of which can often lead to inter-community disputes. The paper reports that common shared space in-between conflicting communities takes on increased importance since the nature of the conflict places emphasis on communities’ confidence, politically and socially, while also highlighting the necessity for confidence in inclusion and feeling secure in the public domain. In order to achieve sustainable environments, strategies to promote shared spaces require further focus on the significance of everyday dynamics as essential aspects for future integration and conflict resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well known advantages of using surface plasmons, in particular the high sensitivity to surface adsorbates, are nearly always compromised in practice by the use of monochromatic excitation and the consequent lack of proper spectroscopic information. This limitation arises from the angle/wavelength selective nature of the surface plasmon resonance. The work described here uses an elegant broadband excitation/decay scheme in a substrate(silica)-grating profiled photoresist-Ag film geometry. Laser radiation of wavelength 488 nm, incident through the silica substrate, excites by near-field coupling a broad band of surface plasmons at the photoresist-Ag interface within the spectral range of the photoresist fluorescence. With a judicious choice of grating period this mode can cross-couple to the mode supported at the Ag-air interface. This latter mode can, in turn, couple out to light by virtue of the same grating profile. The spectral distribution of the light emitted due to this three-step process has been studied as a function of the angle of emission and depth of the grating profiled surface for each polarization. It is found that the optimum emission efficiency occurs with a groove depth in the region of 65 nm. This is considerably greater than the optimum depth of 40 nm required for surface plasmon-photon coupling at a Ag-air interface or, in other words, for the last step of the process in isolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor manufactures are increasing reliant on optical emission spectroscopy (OES) to source information on plasma characteristics and process change. However, nonlinearities in the response of OES sensors and errors in their calibration lead to discrepancies in observed wavelength detector response. This paper presents a technique for the retrospective spectral calibration of multiple OES sensors. Underlying methodology is given, and alignment performance is evaluated using OES recordings from a semiconductor plasma process. The paper concludes with a discussion of results and suggests avenues for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral gamma ray (SGR) logs are used as stratigraphic tools in correlation, sequence stratigraphy and most recently, in clastic successions as a proxy for changes in hinterland palaeoweathering. In this study we analyse the spectral gamma ray signal recorded in two boreholes that penetrated the carbonate and evaporate-dominated Permian–Triassic boundary (PTB) in the South Pars Gasfield (offshore Iran, Persian Gulf) in an attempt to analyse palaeoenvironmental changes from the upper Permian (Upper Dalan Formation) and lower Triassic (Lower Kangan Formation). The results are compared to lithological changes, total organic carbon (TOC) contents and published stable isotope (δ18O, δ13C) results. This work is the first to consider palaeoclimatic effects on SGR logs from a carbonate/evaporate succession. While Th/U ratios compare well to isotope data (and thus a change to less arid hinterland climates from the Late Permian to the Early Triassic), Th/K ratios do not, suggesting a control not related to hinterland weathering. Furthermore, elevated Th/U ratios in the Early Triassic could reflect a global drawdown in U, rather than a more humid episode in the sediment hinterlands, with coincident changes in TOC. Previous work that used spectral gamma ray data in siliciclastic successions as a palaeoclimate proxy may not apply in carbonate/evaporate sedimentary rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today there is a growing interest in the integration of health monitoring applications in portable devices necessitating the development of methods that improve the energy efficiency of such systems. In this paper, we present a systematic approach that enables energy-quality trade-offs in spectral analysis systems for bio-signals, which are useful in monitoring various health conditions as those associated with the heart-rate. To enable such trade-offs, the processed signals are expressed initially in a basis in which significant components that carry most of the relevant information can be easily distinguished from the parts that influence the output to a lesser extent. Such a classification allows the pruning of operations associated with the less significant signal components leading to power savings with minor quality loss since only less useful parts are pruned under the given requirements. To exploit the attributes of the modified spectral analysis system, thresholding rules are determined and adopted at design- and run-time, allowing the static or dynamic pruning of less-useful operations based on the accuracy and energy requirements. The proposed algorithm is implemented on a typical sensor node simulator and results show up-to 82% energy savings when static pruning is combined with voltage and frequency scaling, compared to the conventional algorithm in which such trade-offs were not available. In addition, experiments with numerous cardiac samples of various patients show that such energy savings come with a 4.9% average accuracy loss, which does not affect the system detection capability of sinus-arrhythmia which was used as a test case. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbon nanotube free-standing linearly dichroic polariser is developed using solid-state extrusion. Membrane cohesion is experimentally and numerically demonstrated to derive from inter-tube van der Waals interactions in this family of planar metastable morphologies, controlled by the chemical vapour deposition conditions. Ultra-broadband polarisation (400 nm – 2.5 mm) is shown and corroborated by effective medium and full numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attosecond science is enabled by the ability to convert femtosecond near-infrared laser light into coherent harmonics in the extreme ultraviolet spectral range. While attosecond sources have been utilized in experiments that have not demanded high intensities, substantially higher photon flux would provide a natural link to the next significant experimental breakthrough. Numerical simulations of dual-gas high harmonic generation indicate that the output in the cutoff spectral region can be selectively enhanced without disturbing the single-atom gating mechanism. Here, we summarize the results of these simulations and present first experimental findings to support these predictions. (c) 2012 Optical Society of America