149 resultados para Bacterial infections
Resumo:
Selected strains of the bacterium Pseudomonas putida (previously shown to effect dioxygenase-catalysed asymmetric cis-dihydroxylation of alkenes) have been found to yield chiral sulfoxides from the corresponding sulfides with a strong preference for the (R)- or (S)-configurations but without evidence of sulfone formation; similar results obtained using an Escherichia coli clone (pKST11, containing the Tod C1 C2 B and A genes encoding toluene dioxygenase from P. putida NCIMB 11767) are again consistent with a stereoselective dioxygenase-catalysed sulfoxidation.
Resumo:
This review will summarize the significant body of research within the field of electrical methods of controlling the growth of microorganisms. We examine the progress from early work using current to kill bacteria in static fluids to more realistic treatment scenarios such as flow-through systems designed to imitate the human urinary tract. Additionally, the electrical enhancement of biocide and antibiotic efficacy will be examined alongside recent innovations including the biological applications of acoustic energy systems to prevent bacterial surface adherence. Particular attention will be paid to the electrical engineering aspects of previous work, such as electrode composition, quantitative electrical parameters and the conductive medium used. Scrutiny of published systems from an electrical engineering perspective will help to facilitate improved understanding of the methods, devices and mechanisms that have been effective in controlling bacteria, as well as providing insights and strategies to improve the performance of such systems and develop the next generation of antimicrobial bioelectric materials.
Sequential antimicrobial therapy: treatment of severe lower respiratory tract infections in children
Resumo:
Although there have been a number of studies in adults, to date there has been little research into sequential antimicrobial therapy (SAT) in paediatric populations. The present study evaluates the impact of a SAT protocol for the treatment of severe lower respiratory tract infection in paediatric patients. The study involved 89 paediatric patients (44 control and 45 SAT). The SAT patients had a shorter length of hospital stay (4.0 versus 8.3 days), shorter duration of inpatient antimicrobial therapy (4.0 versus 7.9 days) with the period of iv therapy being reduced from a mean of 5.6 to 1.7 days. The total healthcare costs were reduced by 52%. The resolution of severe lower respiratory tract infection with a short course of iv antimicrobials, followed by conversion to oral therapy yielded clinical outcomes comparable to those achieved using longer term iv therapy. SAT proved to be an important cost-minimizing tool for realizing substantial healthcare costs savings.
Resumo:
The enteric nervous system (ENS) in the gut contains a particularly high concentration of nerve cells, and effectively functions as an independent 'minibrain'. Interactions between nerve, endocrine, immune and other cell types allow the sophisticated regulation of normal gut physiology. They can also bring about a co-ordinated response to parasitic infection, possibly leading to expulsion of the parasite. In this review, Derek McKay and Ian Fairweather will consider, in brief, data pertaining to changes in the ENS following intestinal helminth infections and speculate on the role that these alterations may have in the expulsion of the parasite burden and the putative ability of the parasite to modulate these events.
Resumo:
The resident microbiota of the human gastrointestinal (GI) tract is comprised of ~2,000 bacterial species, the majority of which are anaerobes. Colonization of the GI tract is important for normal development of the immune system and provides a reservoir of catabolic enzymes that degrade ingested plant polysaccharides. Bacteroides fragilis is an important member of the microbiota because it contributes to T helper cell development, but is also the most frequently isolated Gram-negative anaerobe from clinical infections. During the annotation of the B. fragilis genome sequence, we identified a gene predicted to encode a homolog of the eukaryotic protein modifier, ubiquitin. Previously, ubiquitin had only been found in eukaryotes, indicating the bacterial acquisition as a potential inter-kingdom horizontal gene transfer event. Here we discuss the possible roles of B. fragilis ubiquitin and the implications for health and disease. © 2012 Landes Bioscience