227 resultados para Bacterial genetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eubacteria of the genus Rhodococcus are a diverse group of microorganisms commonly found in many environmental niches from soils to seawaters and as plant and animal pathogens. They exhibit a remarkable ability to degrade many organic compounds and their economic importance is becoming increasingly apparent. Although their genetic organisation is still far from understood, there have been many advances in recent years. Reviewed here is the current knowledge of rhodococci relating to gene transfer, recombination, plasmid replication and functions, cloning vectors and reporter genes, gene expression and its control, bacteriophages, insertion sequences and genomic rearrangements. Further fundamental studies of Rhodococcus genetics and the application of genetic techniques to the these bacteria will be needed for their continued biotechnological exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sponges have never been directly examined with respect to the presence of viruses or their potential involvement in horizontal gene transfer. Here we demonstrate for the first time, the presence of viruses in the marine sponge Hymeniacidon perlevis. Moreover, bacterial 16s rDNA was detected in DNA isolated from these viruses, indicating that phage-derived transduction appears to occur in H. perlevis. Phylogenetic analysis revealed that bacterial 16s rDNA isolated from sponge-derived viral and total DNA differed significantly, indicating that not all species are equally involved in transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalloproteases ZapA of Proteus mirabilis and LasB of Pseudomonas aeruginosa are known to be virulence factors their respective opportunistic bacterial pathogens, and are members of the structurally related serralysin and thermolysin families of bacterial metalloproteases respectively. Secreted at the site of infection, these proteases play a key role in the infection process, contributing to tissue destruction and processing of components of the host immune system. Inhibition of these virulence factors may therefore represent an antimicrobial strategy, attenuating the virulence of the infecting pathogen. Previously we have screened a library of N-alpha mercaptoamide dipeptide inhibitors against both ZapA and LasB, with the aim of mapping the S1' binding site of the enzymes, revealing both striking similarities and important differences in their binding preferences. Here we report the design, synthesis, and screening of several inhibitor analogues, based on two parent inhibitors from the original library. The results have allowed for further characterization of the ZapA and LasB active site binding pockets, and have highlighted the possibility for development of broad-spectrum bacterial protease inhibitors, effective against enzymes of the thermolysin and serralysin metalloprotease families.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-alpha-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and L-glycero-D-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-alpha-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-alpha-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotransformation of 3-substituted and 2,5-disubstituted phenols, using whole cells of P. putida UV4, yielded cyclohexenone cis-diols as single enantiomers; their structures and absolute configurations have been determined by NMR and ECD spectroscopy, X-ray crystallography, and stereochemical correlation involving a four step chemoenzymatic synthesis from the corresponding cis-dihydrodiol metabolites. An active site model has been proposed, to account for the formation of enantiopure cyclohexenone cis-diols with opposite absolute configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1ß secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1ß secretion and pyroptosis. Moreover, IL-1ß secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1ß secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods for rapid and simple analysis of lipopolysaccharide (LPS) from bacterial whole-cell lysates or membrane preparations have contributed to advancing our knowledge of the genetics of the LPS biogenesis. LPS, a major constituent of the outer membranes in Gram-negative bacteria, has a complex mechanism of synthesis and assembly that requires the coordinated participation of many genes and gene products. This chapter describes a collection of methods routinely used in our laboratory for the characterization of LPS in Escherichia coli and other bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipopolysaccharide (LPS)-rich outer membrane of gram-negative bacteria provides a protective barrier that insulates these organisms from the action of numerous antibiotics. Breach of the LPS layer can therefore provide access to the cell interior to otherwise impermeant toxic molecules and can expose vulnerable binding sites for immune system components such as complement. Inhibition of LPS biosynthesis, leading to a truncated LPS molecule, is an alternative strategy for antibacterial drug development in which this vital cellular structure is weakened. A significant challenge for in vitro screens of small molecules for inhibition of LPS biosynthesis is the difficulty in accessing the complex carbohydrate substrates. We have optimized an assay of the enzymes required for LPS heptose biosynthesis that simultaneously surveys five enzyme activities by using commercially available substrates and report its use in a small-molecule screen that identifies an inhibitor of heptose synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.