189 resultados para BELL
Resumo:
The vibrated stone column technique is an economical and environmentally friendly process that treats weak ground to enable it to withstand low to moderate loading conditions. The performance of the treated ground depends on various parameters such as the strengths of the in-situ and backfill materials, and the spacing, length and diameter of the columns. In practice, vibrated stone columns are frequently used for settlement control. Studies have shown that columns can fail by bulging, bending, punching or shearing. These failure mechanisms are examined in this paper. The study involved a series of laboratory model tests on a consolidated clay bed. The tests were carried out using two different materials: (a) transparent material with ‘clay like’ properties, and (b) speswhite kaolin. The tests on the transparent material have, probably for the first time, permitted visual examination of deforming granular columns during loading. They have shown that bulging was significant in long columns, whereas punching was prominent in shorter columns. The presence of the columns also greatly improved the load-carrying capacity of the soft clay bed. However, columns longer than about six times their diameter did not lead to further increases in the load-carrying capacity. This suggests that there is an optimum column length for a given arrangement of stone columns beneath a rigid footing.
Resumo:
Energy levels and radiative rates for transitions among the 107 finestructure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(6)3d(10), 3s(2)3p(6)3d(9)4l, 3s(2)3p(5)3d(10)4l, and 3s3p(6)3d(10)4l configurations of Ni-like ions with 60 less than or equal to Z less than or equal to 90 have been calculated using the GRASP code. The collision strengths (Omega) have also been computed for transitions in Gd XXXVII at energies below 800 Ryd, using the DARC code. Resonances have been resolved in a fine energy mesh in the threshold region, and excitation rate coefficients have been calculated for transitions from the ground level to excited levels at temperatures below 2500 eV. These have been compared with those available in the literature, and enhancement in the values of rates, due to resonances, has been observed up to an order of magnitude for some of the transitions.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ni XII are used to derive the emission line ratios R-1 = I(154.17 Angstrom)/I(152.15 Angstrom), R-2 = I(152.95 Angstrom)/I(152.15 Angstrom) and R-3 = 1(160.55 Angstrom)/I(152.15 Angstrom). This is the first time (to our knowledge) that theoretical emission line ratios have been calculated for this ion. The ratios are found to be insensitive to changes in the adopted electron density (N-e) when N-e greater than or equal to 5 x 10(11) cm(-3), typical of laboratory plasmas. However, they do vary with electron temperature (T-e), with for example R-1 and R-3 changing by factors of 1.3 and 1.8, respectively, between T-e = 10(5) and 10(6) K. A comparison of the theoretical line ratios with measurements from the Joint European Tents (JET) tokamak reveals very good agreement between theory and observation for R-1, with an average discrepancy of only 7%. Agreement between the calculated and experimental ratios for R-2 and R-3 is less satisfactory, with average differences of 30 and 33%, respectively. These probably arise from errors in the JET instrument calibration curve. However, the discrepancies are smaller than the uncertainties in the R-2 and R-3 measurements. Our results, in particular for R-1, provide experimental support for the accuracy of the Ni XIII line ratio calculations, and hence for the atomic data adopted in their derivation.