290 resultados para Architecture, Classical.
Resumo:
We present a review of critical concepts and produce recommendations on the management of Philadelphia-negative classical myeloproliferative neoplasms, including monitoring, response definition, first-and second-line therapy, and therapy for special issues. Key questions were selected according the criterion of clinical relevance. Statements were produced using a Delphi process, and two consensus conferences involving a panel of 21 experts appointed by the European LeukemiaNet (ELN) were convened. Patients with polycythemia vera (PV) and essential thrombocythemia (ET) should be defined as high risk if age is greater than 60 years or there is a history of previous thrombosis. Risk stratification in primary myelofibrosis (PMF) should start with the International Prognostic Scoring System (IPSS) for newly diagnosed patients and dynamic IPSS for patients being seen during their disease course, with the addition of cytogenetics evaluation and transfusion status. High-risk patients with PV should be managed with phlebotomy, low-dose aspirin, and cytoreduction, with either hydroxyurea or interferon at any age. High-risk patients with ET should be managed with cytoreduction, using hydroxyurea at any age. Monitoring response in PV and ET should use the ELN clinicohematologic criteria. Corticosteroids, androgens, erythropoiesis-stimulating agents, and immunomodulators are recommended to treat anemia of PMF, whereas hydroxyurea is the first-line treatment of PMF-associated splenomegaly. Indications for splenectomy include symptomatic portal hypertension, drug-refractory painful splenomegaly, and frequent RBC transfusions. The risk of allogeneic stem-cell transplantation-related complications is justified in transplantation-eligible patients whose median survival time is expected to be less than 5 years.
Resumo:
Architecture, whether in the foreground or background, is an intrinsic part of any film, and cinema holds a position as a transformative reference in contemporary architecture. This book addresses the role of architecture in cinema, and through a focus on the use of space, it presents a critical overview of the relation between the two. Through framing, flattening and editing, cinematic space, as the representation of architectural space, focuses on its certain qualities, while eliminating others. Thus, cinema emphasizes individual aspects of space that may be overlooked when the whole context is considered. Space 'acts' in the foreground rather than simply filling the background in the films of Peter Greenaway and Wim Wenders, which are used to analyze two significant cinematic approaches to space, space as form and space as symbol. The detailed analysis of Greenaway's The Belly of an Architect and Wenders' Der Himmel über Berlin (Wings of Desire) offers an innovative and original perspective on space to those interested in both fields of architecture and film studies.
Resumo:
In this work, we report on the significance of gate-source/drain extension region (also known as underlap design) optimization in double gate (DG) FETs to improve the performance of an operational transconductance amplifier (OTA). It is demonstrated that high values of intrinsic voltage gain (A(VO_OTA)) > 55 dB and unity gain frequency (f(T_OTA)) similar to 57 GHz in a folded cascode OTA can be achieved with gate-underlap channel design in 60 nm DG MOSFETs. These values correspond to 15 dB improvement in A(VO_OTA) and three fold enhancement in f(T_OTA) over a conventional non-underlap design. OTA performance based on underlap single gate SOI MOSFETs realized in ultra-thin body (UTB) and ultra-thin body BOX (UTBB) technologies is also evaluated. A(VO_OTA) values exhibited by a DG MOSFET-based OTA are 1.3-1.6 times higher as compared to a conventional UTB/UTBB single gate OTA. f(T_OTA) values for DG OTA are 10 GHz higher for UTB OTAs whereas a twofold improvement is observed with respect to UTBB OTAs. The simultaneous improvement in A(VO_OTA) and f(T_OTA) highlights the usefulness of underlap channel architecture in improving gain-bandwidth trade-off in analog circuit design. Underlap channel OTAs demonstrate high degree of tolerance to misalignment/oversize between front and back gates without compromising the performance, thus relaxing crucial process/technology-dependent parameters to achieve 'idealized' DG MOSFETs. Results show that underlap OTAs designed with a spacer-to-straggle (s/sigma) ratio of 3.2 and operated below a bias current (IBIAS) of 80 mu A demonstrate optimum performance. The present work provides new opportunities for realizing future ultra-wide band OTA design with underlap DG MOSFETs.
Resumo:
The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with an adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.
Resumo:
We discuss a simple architecture for a quantum TOFFOLI gate implemented using three trapped ions. The gate, which, in principle, can be implemented with a single laser-induced operation, is effective under rather general conditions and is strikingly robust (within any experimentally realistic range of values) against dephasing, heating, and random fluctuations of the Hamiltonian parameters. We provide a full characterization of the unitary and noise-affected gate using three-qubit quantum process tomography.
Resumo:
A queue manager (QM) is a core traffic management (TM) function used to provide per-flow queuing in access andmetro networks; however current designs have limited scalability. An on-demand QM (OD-QM) which is part of a new modular field-programmable gate-array (FPGA)-based TM is presented that dynamically maps active flows to the available physical resources; its scalability is derived from exploiting the observation that there are only a few hundred active flows in a high speed network. Simulations with real traffic show that it is a scalable, cost-effective approach that enhances per-flow queuing performance, thereby allowing per-flow QM without the need for extra external memory at speeds up to 10 Gbps. It utilizes 2.3%–16.3% of a Xilinx XC5VSX50t FPGA and works at 111 MHz.