108 resultados para Archaeological dark earths


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is not about the history or archaeology of Priniatikos Pyrgos per se. Rather, it is a review of how the site was recorded using both traditional survey and planning techniques and digital approaches applied through a Geographical Information System (hereafter GIS) during the 2007 through 2010 seasons. Earlier work at the site will necessarily be reviewed, specifically the geophysical survey work of the Istron Geoarchaeological Project and the excavations by Hayden and Tsipopoulou between 2005 and 2006, and regional survey work by Hayden and colleagues in the Vrokastro region (Hayden, this volume, 1999, 2004; Sarris et al. 2005; Shahrukh et al. 2012). The digitisation and incorporation of the latter into the project GIS will be explored in some detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.