157 resultados para Agricultural ecology
Resumo:
While there are many case studies looking at gender mainstreaming in national contexts, this article offers a pan-European perspective to examine how a stated commitment to gender equality at this meta-level works in practice. The European Union’s (EU) stated commitment to gender mainstreaming the Common Agricultural Policy (CAP) is critically reviewed. The article reviews theoretical literature on gender mainstreaming, considers the position of women in agriculture across Europe, and examines efforts by the EU to gender mainstream the CAP. It argues that at best, gender mainstreaming focuses on the symptoms of gender inequality in agriculture rather than the causes. Because of this, gender mainstreaming cannot be transformative in this context. Little thought has been given to the practical difficulties of actually gender mainstreaming a policy such as the CAP. The EU’s priority for the CAP focuses on the mainstream business goal of a viable agricultural industry and does not pay any heed to gender inequalities in agriculture. In short, the stated commitment to gender mainstreaming is empty rhetoric
Resumo:
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Resumo:
I draw attention to the need for ecologists to take spatial structure into account more seriously in hypothesis testing. If spatial autocorrelation is ignored, as it usually is, then analyses of ecological patterns in terms of environmental factors can produce very misleading results. This is demonstrated using synthetic but realistic spatial patterns with known spatial properties which are subjected to classical correlation and multiple regression analyses. Correlation between an autocorrelated response variable and each of a set of explanatory variables is strongly biased in favour of those explanatory variables that are highly autocorrelated - the expected magnitude of the correlation coefficient increases with autocorrelation even if the spatial patterns are completely independent. Similarly, multiple regression analysis finds highly autocorrelated explanatory variables "significant" much more frequently than it should. The chances of mistakenly identifying a "significant" slope across an autocorrelated pattern is very high if classical regression is used. Consequently, under these circumstances strongly autocorrelated environmental factors reported in the literature as associated with ecological patterns may not actually be significant. It is likely that these factors wrongly described as important constitute a red-shifted subset of the set of potential explanations, and that more spatially discontinuous factors (those with bluer spectra) are actually relatively more important than their present status suggests. There is much that ecologists can do to improve on this situation. I discuss various approaches to the problem of spatial autocorrelation from the literature and present a randomisation test for the association of two spatial patterns which has advantages over currently available methods.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Spatial analysis was used to explore the distribution of individual species in an ectomycorrhizal (ECM) fungal community to address: whether mycorrhizas of individual ECM fungal species were patchily distributed, and at what scale; and what the causes of this patchiness might be. Ectomycorrhizas were extracted from spatially explicit samples of the surface organic horizons of a pine plantation. The number of mycorrhizas of each ECM fungal species was recorded using morphotyping combined with internal transcribed spacer (ITS) sequencing. Semivariograms, kriging and cluster analyses were used to determine both the extent and scale of spatial autocorrelation in species abundances, potential interactions between species, and change over time. The mycorrhizas of some, but not all, ECM fungal species were patchily distributed and the size of patches differed between species. The relative abundance of individual ECM fungal species and the position of patches of ectomycorrhizas changed between years. Spatial and temporal analysis revealed a dynamic ECM fungal community with many interspecific interactions taking place, despite the homogeneity of the host community. The spatial pattern of mycorrhizas was influenced by the underlying distribution of fine roots, but local root density was in turn influenced by the presence of specific fungal species.
Resumo:
A field survey was conducted to investigate the contamination of potentially toxic elements (PTEs) arsenic (As), lead (Pb), chromium (Cr), and nickel (Ni) in Tanzanian agricultural soils and to evaluate their uptake and translocation in maize as proxy to the safety of maize used for human and animal consumption. Soils and maize tissues were sampled from 40 farms in Tanzania and analyzed using inductively coupled plasma-mass spectrometry in the United Kingdom. The results showed high levels of PTEs in both soils and maize tissues above the recommended limits. Nickel levels of up to 34.4 and 56.9mgkg(-1) respectively were found in some maize shoots and grains from several districts. Also, high Pb levels >0.2mgkg(-1) were found in some grains. The grains and shoots with high levels of Ni and Pb are unfit for human and animal consumption. Concentrations of individual elements in maize tissues and soils did not correlate and showed differences in uptake and translocation. However, Ni showed a more efficient transfer from soils to shoots than As, Pb and Cr. Transfer of Cr and Ni from shoots to grains was higher than other elements, implying that whatever amount is assimilated in maize shoots is efficiently mobilized and transferred to grains. Thus, the study recommended to the public to stop consuming and feeding their animals maize with high levels of PTEs for their safety.
Resumo:
Samples of suspended, floodplain and channel bed sediment have been used to examine downstream changes in ediment-associated contaminant transport and storage in contrasting rivers in Yorkshire, UK. The concentrations of hosphorus, chromium and selected PCBs associated with sediment in the River Aire and its main tributary, the River Calder, which drain an urbanized and industrialized catchment, are considerably higher than those in the relatively unpolluted River Swale, which drains an agricultural catchment. Concentrations of sediment-associated contaminants in the Aire/Calder system increase downstream, reflecting the location of urban and industrial areas in the middle and lower reaches, and the location of point source inputs, such as sewage treatment works. The ontaminant concentrations associated with floodplain and channel bed sediment in the Rivers Aire and Calder are high, particularly in the lower reaches. This, combined with measurements of sediment storage on the floodplain and channel bed, indicate that significant storage of sediment-associated contaminants occurs in the Rivers Aire and Calder.
Resumo:
Lakes in Arctic and subarctic regions display extreme levels of seasonal variation in light, temperature and ice cover. Comparatively little is known regarding the effects of such seasonal variation on the diet and resource use of fish species inhabiting these systems. Variation in the diet of European whitefish Coregonus lavaretus (L.) during periods of ice cover in this region is often regarded as 'common knowledge'; however, this aspect of the species' ecology has not been examined empirically. Here, we outline the differences in invertebrate community structure, fish activity, and resource use of monomorphic whitefish populations between summer (August-September) and winter (February-March) in three subarctic lakes in Finnish Lapland. Benthic macroinvertebrate densities did not exhibit measurable differences between summer and winter. Zooplankton diversity and abundance, and activity levels of all fish species (measured as catch per unit effort) were lower in winter. The summer diet of C. lavaretus was typical of a generalist utilising a variety of prey sources. In winter, its dietary niche was significantly reduced, and the diet was dominated by chironomid larvae in all study sites. Pelagic productivity decreases during winter, and fish species inhabiting these systems are therefore restricted to feeding on benthic prey. Sampling time has strong effect on our understanding of resource utilisation by whitefish in subarctic lakes and should be taken into account in future studies of these systems. © 2012 John Wiley & Sons A/S.
Resumo:
s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu = 0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.
Resumo:
Although widespread, the ecology of the whiskered bat, Myotis mystacinus in Europe remains poorly understood. Ireland is positioned at the most western extreme of this species' range. To ascertain the ecology of M. mystacinus at its geographic range extreme, the roosting behaviour, home range and habitat use of females in a maternity roost in Ireland was investigated by radio-tracking. M. mystacinus were active in a diversity of habitats: namely, mixed woodland, riparian vegetation, arable land and rough grassland. However, only mixed woodland and riparian habitats were selected as core foraging areas. This is in contrast to a previous study from Britain where only pasture was utilised but is in agreement with data from Slovakia, where woodland was also selected, whilst riparian areas were also utilised by this species in Germany. A high degree of overlap in the foraging areas of individuals was observed. A total of seven roosts were utilised by tracked bats and roost switching behaviour was observed. We discuss our contrasting results in respect to range limitations, regional variability in landscape structure and the composition of bat communities. The present results have implications for the conservation of M. mystacinus within Ireland and other parts of its range, highlighting the need for range wide ecological studies. Regional variability in the ecology of bats related to landscape factors is an important consideration for bat conservation and therefore must be incorporated into future management plans. (C) 2012 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
This study examines the influence of social ecological risks within the domains of parenting, family environment, and community in the prediction of educational outcomes for 770 adolescents (49% boys, 51% girls, M = 13.6 years, SD = 2.0) living in a setting of protracted political conflict, specifically working class areas of Belfast, Northern Ireland. Controlling for religious community, age, and gender, youths' lower academic achievement was associated with family environments characterized by high conflict and low cohesion. School behaviour problems were related to greater exposure to community violence, or sectarian and nonsectarian antisocial behaviour. Youths' expectations about educational attainment were undermined by conflict in the family environment and antisocial behaviour in the community, as well as parenting low in warmth and behavioural control. Findings underscore the importance of considering family and community contributions to youths' educational outcomes. Suggestions regarding targeted interventions toward promoting resilience are discussed, such as assessing both child and family functioning, developing multidimensional interventions for parents, and building community partnerships, among others.
Resumo:
Ponds are an ephemeral feature of the landscape but their large-scale loss can have profound implications for biodiversity and the persistence of amphibian populations. We quantified rates of pond loss throughout Ireland over a period of approximately 125 yr. Environmental parameters and perceived risk factors associated with the current occurrence and density of the Common Frog, Rana temporaria, were also analyzed. The numbers of farmland ponds declined by 54% between 1887–1913 and 2005–11, with most ponds and the greatest losses
in the East, coincident with agricultural intensification and human habitation. The decline of pond numbers was significant but, at approximately 0.5% per annum, was substantially less than losses recorded in other European countries. Losses were coincident with major changes to the agricultural landscape including extensive land drainage. However, losses of pond and natural wetland habitats throughout Ireland may have been partially or wholly mitigated by a synchronous expansion of artificial field margin ditches associated with drainage projects during the mid-20th Century. The ecology of the Common Frog in Ireland was similar to its ecology elsewhere and it appears largely unaffected by pollution and disturbance. Consequently, the conservation status of the frog in Ireland was judged ‘‘favorable’’ and should remain so for the foreseeable future.
Resumo:
Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impacts.