218 resultados para Action protesting missionary
Resumo:
The pharyngeal component of the enteric nervous system of the parasitic nematode, Ascaris suum exhibits immunoreactivity for serotonin (5-hydroxytryptamine or 5-HT) and for FMRFamide-like peptides. This paper describes the application of an in vitro pharmacological approach to investigate the functional role of 5-HT and FMRFamide-like peptides. The pharyngeal pumping behaviour of Ascaris suum was monitored using a modified pressure transducer system which measures pharyngeal pressure changes and therefore pumping. The pharynx did not contract spontaneously; however, 5-HT (10-1000 mu M) stimulated pumping at a frequency of 0 . 5 Hz. FMRFamide had no apparent effect on pharyngeal pumping. The native nematode FMRFamide-related peptide (FaRP), KSAYMRFamide inhibited the pumping elicited by 5-HT. The duration of inhibition was dose-dependent (0 . 1-1000 nM) with a threshold of 0 . 1 nM. In 4 preparations, the inhibition of the pharyngeal muscle was preceded by an initial excitation and increase in the amplitude of pharyngeal pressure changes. The pharynx is involved in various nematode processes, including feeding, regulation of hydrostatic pressure and excretion. The role of 5-HT and KSAYMRFamide in the pharyngeal function of nematodes is discussed.
Resumo:
Recombining plasmas produced by picosecond laser pulses are characterized by measuring ratio of intensities of resonance lines of H- and He-like ions in the plasmas. It is found that the rapidly recombining plasmas produced by picosecond laser pulses are suitable for high-gain operation.
Resumo:
We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.
Resumo:
Purpose: To measure action spectra for the induction of single- strand breaks (SSB) and double-strand breaks (DSB) in plasmid DNA by low-energy photons and provide estimates for the energy dependence of strand-break formation important for track-structure simulations of DNA damage.
MODULATORY ACTION OF HELICOBACTER-PYLORI ON HISTAMINE-RELEASE FROM MAST-CELLS AND BASOPHILS IN-VITRO
Resumo:
Helicobacter pylori is important in the aetiology of peptic ulceration. Despite inducing an inflammatory response in the mucosa, the organism persists, suggesting that it has efficient protective mechanisms. Some bacterial and viral products modulate histamine secretion from inflammatory cells. Therefore, this study examined the modulatory effects of H. pylori preparations on histamine release from rat peritoneal mast cells and human basophils. Eleven clinical isolates of H. pylori were prepared in different ways: as whole washed bacteria, washed sonicated bacteria, and formalin-killed bacteria, and as outer-membrane and lipopolysaccharide (LPS) extracts. Histamine release from mast cells or basophils was not elicited by any of these bacterial preparations alone. However, when mixed with various secretory stimulants, the bacterial preparations caused inhibition of histamine release from rat mast cells (calcium ionophore A23187, compound 48/80, concanavalin A, anti-rat IgE) and human basophils (A23187, N-formyl Met-Leu-Phe). The degree of inhibition ranged from 48 % to 97 %. These results indicate that H. pylori exerts an inhibitory effect on cells of the immune system that contributes to its persistence within the gastric mucosa.