114 resultados para Accident Communications.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz using the κ-μ / gamma composite fading model. Realistic measurements have been conducted considering four individual scenarios namely line of sight (LOS) and non-LOS (NLOS) walking, rotation and random movements within an indoor laboratory environment. It is shown that the κ-μ / gamma composite fading model provides a better fit to the fading observed in off-body communications channels compared to the conventional Nakagami-m and Rician fading models.
Resumo:
This paper investigates the potential improvement in signal reliability for outdoor short-range off-body communications channels at 868 MHz using the macro-diversity offered by multiple co-located base stations. In this study, ten identical hypothetical base stations were positioned equidistantly around the perimeter of a rectangle of length 6.67 m and width 3.3 m. A body worn node was placed on the central chest region of an adult male. Five scenarios, each considering different user trajectories, were then analyzed to test the efficacy of using macro-diversity when the desired link is subject to shadowing caused by the human body. A number of selection combining based macro-diversity configurations consisting of four and then ten base stations were considered. It was found that using a macro-diversity system consisting of four base stations (or equivalently signal branches), a maximum diversity gain of 22.5 dB could be obtained while implementing a 10-base station setup this figure could be improved to 25.2 dB.
Resumo:
In this paper we investigate the effects of vehicular traffic on body-to-body (B2B) communications channels in an urban environment at 2.45 GHz. In particular, the impact of differing vehicle types passing in the vicinity of a B2B link are investigated for different body orientations relative to one another at the side of a busy urban street. Initial findings suggest that the average disturbance in a B2B channel can last for 2 seconds and depending on the vehicle size, fades in excess of 40 dB can occur. The body orientations are shown to be a significant factor on the effects of vehicular traffic on the B2B channel.
Resumo:
Mutual variation of the received signal which occurs as a consequence of the channel reciprocity property has recently been proposed as a viable method for secret key generation. However, this cannot be strictly maintained in practice as the property is applicable only in the absence of interference. To ensure the propagation defined key remains secret, one requirement is that there remain high degrees of uncertainty between the legitimate users channel response and that of any eavesdropper's. In this paper, we investigate whether such de-correlation occurs for an indoor point-to-point link at 2.45 GHz. This is achieved by computing the localized correlation coefficient between the simultaneous channel response measured by the legitimate users and that of multiple distributed eavesdroppers for static and dynamic scenarios.
Resumo:
A compact implantable printed meandered folded dipole antenna with a volume of 101.8 mm3 and robust performance is presented for operation in the 2.4 GHz medical ISM bands. The implant antenna is shown to maintain its return loss performance in the 2360???2400 MHz, 2400???2483.5 MHz and 2483.5???2500 MHz frequency bands, simulated in eleven different body tissue types with a broad range of electrical properties. Bandwidth and resonant frequency changes are reported for the same antenna implanted in high water content tissues such as muscle and skin as well as low water content tissues such as subcutaneous fat and bone. The antenna was also shown to maintain its return loss performance as it was moved towards a tissue boundary within a simulated phantom testbed.
Resumo:
The privacy of voice over IP (VoIP) systems is achieved by compressing and encrypting the sampled data. This paper investigates in detail the leakage of information from Skype, a widely used VoIP application. In this research, it has been demonstrated by using the dynamic time warping (DTW) algorithm, that sentences can be identified with an accuracy of 60%. The results can be further improved by choosing specific training data. An approach involving the Kalman filter is proposed to extract the kernel of all training signals.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz. This is realized with the aid of the $\kappa-\mu$ / gamma composite fading model which assumes that the transmitted signal undergoes $\kappa-\mu$ fading which is subject to \emph{multiplicative} shadowing. Based on this, the total power of the multipath components, including both the dominant and scattered components, is subject to non-negligible variations that follow the gamma distribution. For this model, we present an integral form of the probability density function (PDF) as well as important analytic expressions for the PDF, cumulative distribution function, moments and moment generating function. In the case of indoor off-body communications, the corresponding measurements were carried out in the context of four explicit individual scenarios namely: line of sight (LOS) and non-LOS (NLOS) walking, rotational and random movements. The measurements were repeated within three different indoor environments and considered three different hypothetical body worn node locations. With the aid of these results, the parameters for the $\kappa-\mu$ / gamma composite fading model were estimated and analyzed extensively. Interestingly, for the majority of the indoor environments and movement scenarios, the parameter estimates suggested that dominant signal components existed even when the direct signal path was obscured by the test subject's body. Additionally, it is shown that the $\kappa-\mu$ / gamma composite fading model provides an adequate fit to the fading effects involved in off-body communications channels. Using the Kullback-Leibler divergence, we have also compared our results with another recently proposed shadowed fading model, namely the $\kappa-\mu$ / lognormal LOS shadowed fading model. It was found that the $\kappa-\mu$ / gamma composite fading model provided a better fit for the majority of the scenarios considered in this study.
Resumo:
This paper investigates the potential improvement in signal reliability for indoor off-body communications channels operating at 5.8 GHz using switched diversity techniques. In particular we investigate the performance of switch-and-stay combining (SSC), switch-and-examine combining (SEC) and switch-and-examine combining with post-examining selection (SECps) schemes which utilize multiple spatially separated antennas at the base station. During the measurements a test subject, wearing an antenna on his chest, performed a number of walking movements towards and then away from a uniform linear array. It was found that all of the considered diversity schemes provided a worthwhile signal improvement. However, the performance of the diversity systems varied according to the switching threshold that was adopted. To model the fading envelope observed at the output of each of the combiners, we have applied diversity specific equations developed under the assumption of Nakagami-$m$ fading. As a measure of the goodness-of-fit, the Kullback-Leibler divergence between the empirical and theoretical probability density functions (PDFs) was calculated and found to be close to 0. To assist with the interpretation of the goodness-of-fit achieved in this study, the standard deviation, $\sigma$, of a zero-mean, $\sigma^2$ variance Gaussian PDF used to approximate a zero-mean, unit variance Gaussian PDF is also presented. These were generally quite close to 1 indicating that the theoretical models provided an adequate fit to the measured data.