238 resultados para AIDS SURVIVAL
Resumo:
Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.
Resumo:
Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and macrophages. Survival in macrophages occurs in a membrane-bound compartment that is distinct from the lysosome, suggesting that B. cenocepacia prevents phagolysosomal fusion. In a previous study, we employed signature-tagged mutagenesis and an agar bead model of chronic pulmonary infection in rats to identify B. cenocepacia genes that are required for bacterial survival in vivo. One of the most significantly attenuated mutants had an insertion in the mgtC gene. Here, we show that mgtC is also needed for growth of B. cenocepacia in magnesium-depleted medium and for bacterial survival within murine macrophages. Using fluorescence microscopy, we demonstrated that B. cenocepacia mgtC mutants, unlike the parental isolate, colocalize with the fluorescent acidotropic probe LysoTracker Red. At 4 h postinfection, mgtC mutants expressing monomeric red fluorescent protein cannot retain this protein within the bacterial cytoplasm. Together, these results demonstrate that, unlike the parental strain, an mgtC mutant does not induce a delay in phagolysosomal fusion and the bacterium-containing vacuoles are rapidly targeted to the lysosome, where bacteria are destroyed.
Resumo:
Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.
Resumo:
Burkholderia are microorganisms that have a unique ability to adapt and survive in many different environments. They can also serve as biopesticides and be used for the biodegradation of organic compounds. Usually harmless while living in the soil, these bacteria are opportunistic pathogens of plants and immunocompromised patients, and occasionally infect healthy individuals. Some of the species in this genus can also be utilised as biological weapons. They all possess very large genomes and have two or more circular chromosomes. Their survival and persistence, not only in the environment but also in host cells, offers a remarkable example of bacterial adaptation.
Resumo:
Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.
Resumo:
Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two B. cepacia complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that B. cepacia CEP021 (genomovar VI), and Burkholderia vietnamiensis (previously B. cepacia genomovar V) CEP040 can survive in PU5-1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma-primed uninfected cells. We propose that the ability of B. cepacia to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.
Resumo:
Members of the taxonomically diverse Burkholderia cepacia complex have become a major health risk for patients with cystic fibrosis (CF). Although patient-to-patient transmission of B. cepacia strains has been well-documented, very little is known about possible vehicles of transmission and reservoirs for these micro-organisms. In this work, it is shown that strains of the B. cepacia complex can survive within different isolates of the genus Acanthamoeba. Trophozoites containing bacteria developed profuse cytoplasmic vacuolization. Vacuolization was not detected in trophozoites infected with live Escherichia coli or heat-killed B. cepacia, or by incubation of trophozoites with filter-sterilized culture supernatants, indicating that metabolically active intracellular bacteria are required for the formation of vacuoles. Experiments with two different B. cepacia strains and two different Acanthamoeba isolates revealed that bacteria display a low level of intracellular replication approximately 72-96 h following infection. In contrast, extracellular bacteria multiplied efficiently on by-products released by amoebae. The findings suggest that amoebae may be a reservoir for B. cepacia and possibly a vehicle for transmission of this opportunistic pathogen among CF patients.
Resumo:
Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.
Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.
Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.
Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.
Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.
Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.
Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.
Resumo:
Students' attitudes to and knowledge and awareness of the acquired immune deficiency syndrome (AIDS) was assessed by questionnaire. The recent information campaign reached a high proportion of the sample of 1063 students and television was the most memorable medium. Students were generally aware that AIDS was not associated with social contact but there was confusion about the risk of infection from donating or receiving blood, with 17.9% of blood donors now less willing to donate blood. Most of the students were aware that the condom reduces the risk of spread of AIDS sexually but there was no indication of widespread condom usage among the 399 students who admitted they were sexually active; 39.1% of this group used condoms alone or with other protection. Almost half the sample (47.6%) would like to have the opportunity to have their blood tested for the AIDS virus; 96 students would prefer this to be at a clinic and 59 of them would not wish their family doctor to know the result. A high proportion of the sample considered that AIDS victims should be cared for at home or in a special hospice.
Resumo:
Human Papillomavirus (HPV) related oropharyngeal squamous cell carcinomas (OPSCCs) are reported to have improved prognosis and survival in comparison to other head and neck squamous cell cancers (HNSCCs). This systematic review and meta-analysis examines survival differences in HPV-positive HNSCC and OPSCC subtypes including tonsillar carcinoma in studies not previously investigated. Four electronic databases were searched from their inception till April 2011. A random effects meta-analysis was used to pool study estimates evaluating disease-specific (death from HNSCC), overall (all-cause mortality), progression-free and disease-free (recurrence free) survival outcomes in HPV-positive vs. HPV-negative HNSCCs. All statistical tests were two-sided. Forty-two studies were included. Patients with HPV-positive HNSCC had a 54% better overall survival compared to HPV-negative patients HR 0.46 (95% CI 0.37-0.57); the pooled HR for tonsillar cancer and OPSCC was 0.50 (95% CI 0.33-0.77) and HR 0.47 (95% CI 0.35-0.62) respectively. The pooled HR for disease specific survival was 0.28 (95% CI 0.19-0.40); similar effect sizes were found irrespective of the adjustment for confounders, HPV detection methods or study location. Both progression-free survival and disease-free survival were significantly improved in HPV-positive HNSCCs. HPV-positive HNSCCs and OPSCCs patients have a significantly lower disease specific mortality and are less likely to experience progression or recurrence of their cancer than HPV-negative patients; findings which have connotations for treatment selection in these patients.
Resumo:
Oesophageal cancer survival is poor with variation across Europe. No pan-European studies of survival differences by oesophageal cancer subtype exist. This study investigates rates and trends in oesophageal cancer survival across Europe. Data for primary malignant oesophageal cancer diagnosed in 1995-1999 and followed up to the end of 2003 was obtained from 66 cancer registries in 24 European countries. Relative survival was calculated using the Hakulinen approach. Staging data were available from 19 registries. Survival by region, gender, age, morphology and stage was investigated. Cohort analysis and the period approach were applied to investigate survival trends from 1988 to 2002 for 31 registries in 17 countries. In total 51,499 cases of oesophageal cancer diagnosed 1995-1999 were analysed. Overall, European 1- and 5-year survival rates were 33.4% (95% CI 32.9-33.9%) and 9.8% (95% CI 9.4-10.1%), respectively. Males, older patients and patients with late stage disease had poorer 1- and 5-year relative survival. Patients with squamous cell carcinoma had poorer 1-year relative survival. Regional variation in survival was observed with Central Europe above and Eastern Europe below the European pool. Survival for distant stage disease was similar across Europe while survival rates for localised disease were below the European pool in Eastern and Southern Europe. Improvement in European 1-year relative survival was reported (p=0.016). Oesophageal cancer survival was poor across Europe. Persistent regional variations in 1-year survival point to a need for a high resolution study of diagnostic and treatment practices of oesophageal cancer.
Resumo:
The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in-and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields