241 resultados para terbium ions
Resumo:
An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.
Resumo:
This paper reports a systematic study of the dependence on atomic number of the dielectronic recombination resonance strengths for He-like, Li-like and Be-like ions. Recent measurements of dielectronic recombination resonance strengths for the KLL and KLM manifolds for iron, yttrium, iodine, holmium, and bismuth are also described. The resonance strengths were normalized to calculated electron impact ionization cross sections. The measured resonance strengths generally agree well with theoretical calculations using the distorted wave approximation. However, KLM resonance strength measurements on high atomic number open-shell ions gave higher values than those suggested by calculations. Using recently measured data, along with existing results, scaling laws have been generated as a function of atomic number for He-like, Li-like, and Be-like ions in the KLL and KLM manifolds.
Resumo:
We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).
Resumo:
Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.
Resumo:
A many-body theory approach developed by the authors [Phys. Rev. A 70, 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns^{-1}, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively.
Resumo:
We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N + 1) saddle points in complex time, which form a characteristic "smile." Numerical calculations are performed for H(-) in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10(10), 5 x 10(10), and 10(11) W/cm(2), and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.