104 resultados para tension-compression asymmetry
Resumo:
This paper presents a study on concrete fracture and the associated mesh sensitivity using the finite element (FE) method with a local concrete model in both tension (Mode I) and compression.To enable the incorporation of dynamic loading, the FE model is developed using a transient dynamic analysis code LS-DYNA Explicit.A series of investigations have been conducted on typical fracture scenarios to evaluate the model performances and calibration of relevant parameters.The K&C damage model was adopted because it is a comprehensive local concrete model which allows the user to change the crack band width, fracture energy and rate dependency of the material.Compressive localisation modelling in numerical modelling is also discussed in detail in relation to localisation.An impact test specimen is modelled.
Resumo:
This paper contributes to the understanding of lime-mortar masonry strength and deformation (which determine durability and allowable stresses/stiffness in design codes) by measuring the mechanical properties of brick bound with lime and lime-cement mortars. Based on the regression analysis of experimental results, models to estimate lime-mortar masonry compressive strength are proposed (less accurate for hydrated lime (CL90s) masonry due to the disparity between mortar and brick strengths). Also, three relationships between masonry elastic modulus and its compressive strength are proposed for cement-lime; hydraulic lime (NHL3.5 and 5); and hydrated/feebly hydraulic lime masonries respectively.
Disagreement between the experimental results and former mathematical prediction models (proposed primarily for cement masonry) is caused by a lack of provision for the significant deformation of lime masonry and the relative changes in strength and stiffness between mortar and brick over time (at 6 months and 1 year, the NHL 3.5 and 5 mortars are often stronger than the brick). Eurocode 6 provided the best predictions for the compressive strength of lime and cement-lime masonry based on the strength of their components. All models vastly overestimated the strength of CL90s masonry at 28 days however, Eurocode 6 became an accurate predictor after 6 months, when the mortar had acquired most of its final strength and stiffness.
The experimental results agreed with former stress-strain curves. It was evidenced that mortar strongly impacts masonry deformation, and that the masonry stress/strain relationship becomes increasingly non-linear as mortar strength lowers. It was also noted that, the influence of masonry stiffness on its compressive strength becomes smaller as the mortar hydraulicity increases.
Resumo:
A three-dimensional continuum damage mechanics-based material model has been implemented in an implicit Finite Element code to simulate the progressive degradation of advanced composite materials. The damage model uses seven damage variables assigned to tensile, compressive and non-linear shear damage at a laminae level. The objectivity of the numerical discretization is assured using a smeared formulation. The material model was benchmarked against experimental uniaxial coupon tests and it is shown to reproduce key aspects observable during failure, such as the inclined fracture plane in matrix compression and the shear band in a ±45° tension specimen.
Resumo:
The effects of a 100 mm diameter integrally-flanged hole in a hat-stiffenend carbon-fibre composite panel, loaded in uniaxial compression, were investigated and compared with a similar panel containing an unflanged hole. Details of the manufacturing techniques used in the production of the integral flange are presented. The stiffening effects of the flange reduced the bending strains, which may lead to high interlaminar shear strains, around the cutout while increasing the membrane strains. These membrane strains were well below the limit strains for this composite material. The skin in the unflanged hole also underwent a change in buckling mode shape from three longitudinal half-wavelengths to five half-wavelengths. No such change was observed in the flanged panel and this buckled in four longitudinal half-wavelengths. The ultimate strength of both panels was determined by the load carrying capability of the stiffeners.
Resumo:
The European Cystic Fibrosis Society Clinical Trial Network (ECFS-CTN) has established a Standardization Committee to undertake a rigorous evaluation of promising outcome measures with regard to use in multicentre clinical trials in cystic fibrosis (CF). The aim of this article is to present a review of literature on clinimetric properties of the infant raised-volume rapid thoracic compression (RVRTC) technique in the context of CF, to summarise the consensus amongst the group on feasibility and answer key questions regarding the promotion of this technique to surrogate endpoint status.
METHODS: A literature search (from 1985 onwards) identified 20 papers that met inclusion criteria of RVRTC use in infants with CF. Data were extracted and tabulated regarding repeatability, validity, correlation with other outcome measures, responsiveness and reference values. A working group discussed the tables and answered 4 key questions.
RESULTS: Overall, RVRTC in particular forced expiratory volume in 0.5s, showed good clinimetric properties despite presence of individual variability. Few studies showed a relationship between RVRTC and inflammation and infection, and to date, data remains limited regarding the responsiveness of RVRTC after an intervention. Concerns were raised regarding feasibility in multi-centre studies and availability of reference values.
CONCLUSION: The ECFS-CTN Working Group considers that RVRTC cannot be used as a primary outcome in clinical trials in infants with CF before universal standardization of this measurement is achieved and implementation of inter-institutional networking is in place. We advise its use currently in phase I/II trials and as a secondary endpoint in phase III studies. We emphasise the need for (1) more short-term variability and longitudinal 'natural history' studies, and (2) robust reference values for commercially available devices.
Resumo:
Shape stabilised phase change materials (SSPCMs) based on a high density poly(ethylene)(hv-HDPE) with high (H-PW, Tm = 56–58 °C) and low (L-PW, Tm = 18–23 °C) melting point paraffin waxes were readily prepared using twin-screw extrusion. The thermo-physical properties of these materials were assessed using a combination of techniques and their suitability for latent heat thermal energy storage (LHTES) assessed. The melt processing temperature (160 °C) of the HDPE used was well below the onset of thermal decomposition of H-PW (220 °C), but above that for L-PW (130 °C), although the decomposition process extended over a range of 120 °C and the residence time of L-PW in the extruder was <30 s. The SSPCMs prepared had latent heats up to 89 J/g and the enthalpy values for H-PW in the respective blends decreased with increasing H-PW loading, as a consequence of co-crystallisation of H-PW and hv-HDPE. Static and dynamic mechanical analysis confirmed both waxes have a plasticisation effect on this HDPE. Irrespective of the mode of deformation (tension, flexural, compression) modulus and stress decreased with increased wax loading in the blend, but the H-PW blends were mechanically superior to those with L-PW.
Resumo:
A structural design optimisation has been carried out to allow for asymmetry and fully tapered portal frames. The additional weight of an asymmetric structural shape was found to be on average 5–13% with additional photovoltaic (PV) loading having a negligible effect on the optimum design. It was also shown that fabricated and tapered frames achieved an average percentage weight reduction of 9% and 11%, respectively, as compared to comparable hot-rolled steel frames. When the deflection limits recommended by the Steel Construction Institute were used, frames were shown to be deflection controlled with industrial limits yielding up to 40% saving.
Resumo:
Purpose: To assess the bacterial contamination risk in cataract surgery associated with mechanical compression of the lid margin immediately after sterilization of the ocular surface.
Setting: Department of Cataract, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
Design: Prospective randomized controlled double-masked trial.
Methods: Patients with age-related cataract were randomly assigned to 1 of 2 groups. In Group A (153 eyes), the lid margin was compressed and scrubbed for 360 degrees 5 times with a dry sterile cotton-tipped applicator immediately after ocular sterilization and before povidone-iodine irrigation of the conjunctival sac. Group B (153 eyes) had identical sterilization but no lid scrubbing. Samples from the lid margin, liquid in the collecting bag, and aqueous humor were collected for bacterial culture. Primary outcome measures included the rate of positive bacterial culture for the above samples. The species of bacteria isolated were recorded.
Results: Group A and Group B each comprised 153 eyes. The positive rate of lid margin cultures was 54.24%. The positive rate of cultures for liquid in the collecting bag was significantly higher in Group A (23.53%) than in Group B (9.80%) (P=.001).The bacterial species cultured from the collecting bag in Group B were the same as those from the lid margin in Group A. The positive culture rate of aqueous humor in both groups was 0%.
Conclusion: Mechanical compression of the lid margin immediately before and during cataract surgery increased the risk for bacterial contamination of the surgical field, perhaps due to secretions from the lid margin glands.
Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned.
Resumo:
The duration compression effect is a phenomenon in which prior adaptation to a spatially circumscribed dynamic stimulus results in the duration of subsequent subsecond stimuli presented in the adapted region being underestimated. There is disagreement over the frame of reference within which the duration compression phenomenon occurs. One view holds that the effect is driven by retinotopic-tuned mechanisms located at early stages of visual processing, and an alternate position is that the mechanisms are spatiotopic and occur at later stages of visual processing (MT+). We addressed the retinotopic-spatiotopic question by using adapting stimuli – drifting plaids - that are known to activate global-motion mechanisms in area MT. If spatiotopic mechanisms contribute to the duration compression effect, drifting plaid adaptors should be well suited to revealing them. Following adaptation participants were tasked with estimating the duration of a 600ms random dot stimulus, whose direction was identical to the pattern direction of the adapting plaid, presented at either the same retinotopic or the same spatiotopic location as the adaptor. Our results reveal significant duration compression in both conditions, pointing to the involvement of both retinotopic-tuned and spatiotopic-tuned mechanisms in the duration compression effect.
Resumo:
This paper builds on previous work to show how using holistic and iterative design optimisation tools can be used to produce a commercially viable product that reduces a costly assembly into a single moulded structure. An assembly consisting of a structural metallic support and compression moulding outer shell undergo design optimisation and analysis to remove the support from the assembly process in favour of a structural moulding. The support is analysed and a sheet moulded compound (SMC) alternative is presented, this is then combined into a manufacturable shell design which is then assessed on viability as an alternative to the original.
Alongside this a robust material selection system is implemented that removes user bias towards materials for designs. This system builds on work set out by the Cambridge Material Selector and Boothroyd and Dewhurst, while using a selection of applicable materials currently available for the compression moulding process. This material selection process has been linked into the design and analysis stage, via scripts for use in the finite element environment. This builds towards an analysis toolkit that is suggested to develop and enhance manufacturability of design studies.
Resumo:
Drawing on ethnographic data collected while working as a deckhand on two Scottish trawlers, this article analyses the spatialisation of social, religious and economic inequalities that marked relations between crew members while they hunted for prawns in the North Sea. Moreover, it explores these inequalities as a wider feature of life in Gamrie, Aberdeenshire, a Brethren and Presbyterian fishing village riven by disparities in wealth and religion. Inequalities identified by fishermen at sea mirrored those identified by residents onshore, resulting in fishing boats being experienced as small 'floating villages'. Drawing on the work of Rodney Needham, this article suggests that these asymmetries can be traced along a vertical axis, with greater to lesser wealth and religiosity moving from top/above to bottom/below. The article seeks to understand the presence and persistence of these hierarchies at sea and on land, by revisiting dual classification within anthropological theory.