100 resultados para super-heavy nuclei
Resumo:
Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.
Resumo:
We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ∼ 150-200 d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterized by weak or absent [Fe III] emission, pointing at a low ejecta ionization state as a result of high densities. To constrain the ejecta and Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ∼60 d. Models with enough Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much γ -ray trapping.We instead propose a model with ∼1M of Ni and ∼2 M of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 M of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.
Resumo:
We present results from SEPPCoN, an on-going Survey of the Ensemble Physical Properties of Cometary Nuclei. In this report we discuss mid-infrared measurements of the thermal emission from 89 nuclei of Jupiter-family comets (JFCs). All data were obtained in 2006 and 2007 using imaging capabilities of the Spitzer Space Telescope. The comets were typically 4-5 AU from the Sun when observed and most showed only a point-source with little or no extended emission from dust. For those comets showing dust, we used image processing to photometrically extract the nuclei. For all 89 comets, we present new effective radii, and for 57 comets we present beaming parameters. Thus our survey provides the largest compilation of radiometrically-derived physical properties of nuclei to date. We have six main conclusions: (a) The average beaming parameter of the JFC population is 1.03 ± 0.11, consistent with unity; coupled with the large distance of the nuclei from the Sun, this indicates that most nuclei have Tempel 1-like thermal inertia. Only two of the 57 nuclei had outlying values (in a statistical sense) of infrared beaming. (b) The known JFC population is not complete even at 3 km radius, and even for comets that approach to ˜2 AU from the Sun and so ought to be more discoverable. Several recently-discovered comets in our survey have small perihelia and large (above ˜2 km) radii. (c) With our radii, we derive an independent estimate of the JFC nuclear cumulative size distribution (CSD), and we find that it has a power-law slope of around -1.9, with the exact value depending on the bounds in radius. (d) This power-law is close to that derived by others from visible-wavelength observations that assume a fixed geometric albedo, suggesting that there is no strong dependence of geometric albedo with radius. (e) The observed CSD shows a hint of structure with an excess of comets with radii 3-6 km. (f) Our CSD is consistent with the idea that the intrinsic size distribution of the JFC population is not a simple power-law and lacks many sub-kilometer objects.
Resumo:
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
Resumo:
We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.
Resumo:
The wettability and hydrophobicity of super-hydrophobic (SH) meshes is greatly influenced by their topographic structures, chemical composition and coating process. In this study, the properties of copper and stainless steel meshes, coated with super-hydrophobic electrolessly deposited silver were investigated. A new method to test the pressure resistance of super-hydrophobic mesh was applied to avoid any deformation of mesh. Results showed that SH copper mesh and SH stainless steel meshes with the same pore size have almost the same contact angle and the same hydrophobicity. SH copper mesh with a pore size of 122 μm can resist water pressure of 4900 Pa and a decrease of pore size of mesh can increase the pressure resistance of SH copper mesh. The SH copper mesh modified with 0.1 M HS(CH2)10COOH solution in ethanol has a controllable water permeation property by simply adjusting the pH of water solution. SH copper mesh shows super-oleophilicity with organic solvents and so with a water contact angle of 0° and it can be an effective tool for organic solvents/water separation. The separation efficiency of SH copper mesh for separating mixtures of organic solvent and water can be as high as 99.8%.
Resumo:
We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 +/- 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H]= -0.16 +/- 0.08 and has a radius R-star = 0.716 +/- 0.024 R-circle dot and mass M-star = 0.775 +/- 0.027M(circle dot). The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R-p = 2.53 +/- 0.18 R-circle plus. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 +/- 1.33 M-circle plus planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.