105 resultados para strength differential effect
Resumo:
We report on differential etching behavior of the different orientations of the polarization in BiFeO3 (BFO), similar to other ferroelectrics, such as LiNbO3. We show how this effect can be used to fabricate epitaxial BiFeO3 nanostructures. By means of piezoresponse force microscopy (PFM) domains of arbitrary shape and size can be poled in an epitaxial BiFeO3 film, which are then reproduced in the film morphology by differential etching. Structures with a lateral size smaller than 200 nm were fabricated and very good retention properties as well as a highly increased piezoelectric response were detected by PFM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630027]
Resumo:
Creep of Steel Fiber Reinforced Concrete (SFRC) under flexural loads in the cracked state and to what extent different factors determine creep behaviour are quite understudied topics within the general field of SFRC mechanical properties. A series of prismatic specimens have been produced and subjected to sustained flexural loads. The effect of a number of variables (fiber length and slenderness, fiber content, and concrete compressive strength) has been studied in a comprehensive fashion. Twelve response variables (creep parameters measured at different times) have been retained as descriptive of flexural creep behaviour. Multivariate techniques have been used: the experimental results have been projected to their latent structure by means of Principal Components Analysis (PCA), so that all the information has been reduced to a set of three latent variables. They have been related to the variables considered and statistical significance of their effects on creep behaviour has been assessed. The result is a unified view on the effects of the different variables considered upon creep behaviour: fiber content and fiber slenderness have been detected to clearly modify the effect that load ratio has on flexural creep behaviour.
Resumo:
Converging evidence implicates immune abnormalities in schizophrenia (SCZ), and recent genome-wide association studies (GWAS) have identified immune-related single-nucleotide polymorphisms (SNPs) associated with SCZ. Using the conditional false discovery rate (FDR) approach, we evaluated pleiotropy in SNPs associated with SCZ (n=21 856) and multiple sclerosis (MS) (n=43 879), an inflammatory, demyelinating disease of the central nervous system. Because SCZ and bipolar disorder (BD) show substantial clinical and genetic overlap, we also investigated pleiotropy between BD (n=16 731) and MS. We found significant genetic overlap between SCZ and MS and identified 21 independent loci associated with SCZ, conditioned on association with MS. This enrichment was driven by the major histocompatibility complex (MHC). Importantly, we detected the involvement of the same human leukocyte antigen (HLA) alleles in both SCZ and MS, but with an opposite directionality of effect of associated HLA alleles (that is, MS risk alleles were associated with decreased SCZ risk). In contrast, we found no genetic overlap between BD and MS. Considered together, our findings demonstrate genetic pleiotropy between SCZ and MS and suggest that the MHC signals may differentiate SCZ from BD susceptibility.Molecular Psychiatry advance online publication, 28 January 2014; doi:10.1038/mp.2013.195.
Resumo:
The plain fatigue and fretting fatigue tests of Ti-1023 titanium alloy were performed using a high-frequency push-pull fatigue testing machine. Both σmax versus number of cycles to failure curves were obtained for comparative analysis of the fretting effect on fatigue performance of the titanium alloy. Meanwhile, by analyzing the fracture of plain fatigue and fretting fatigue, the fretting scar and the fretting debris observed by scanning electron microscopy (SEM), the mechanism of fretting fatigue failure of Ti-1023 titanium alloy is discussed. The fretting fatigue strength of Ti-1023 titanium alloy is 175 MPa under 10 MPa contact pressure, which is 21% of plain fatigue strength (836 MPa). Under fretting condition, the Ti-1023 titanium alloy fatigue fracture failure occurs in a shorter fatigue life. When it comes to σmax versus number of cycles to failure curves, data points in the range of 106–107 cycles under plain fatigue condition moved to the range of 105–106 under fretting fatigue condition. The integrity of the fatigue specimen surface was seriously damaged under the effect of fretting. With the alternating stress loaded on specimen, the stress concentrated on the surface of fretting area, which brought earlier the initiation and propagation of crack.
Resumo:
Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS.
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability.
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001).
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.
Resumo:
With a new test facility, we have investigated fretting fatigue properties of Ti-1023 titanium alloy at different contact pressure. Both fatigue fracture and fretting scar were analyzed by scanning electron microscopy (SEM). Moreover, the depth of crack initiation area in fatigue fracture has been analyzed quantitatively, to investigate the relationship between the depth of crack initiation area and the fretting fatigue strength. The changing trends of the depth of crack initiation area and fretting fatigue strength with the increase of contact pressure show obvious opposite correlations. The depth of crack initiation area increases rapidly with the increase of contact pressure at low contact pressure (smaller than 10 MPa), and the fretting fatigue strength drops rapidly. At the contact pressure of 10–45 MPa, both the depth of crack initiation area and the fretting fatigue strength do not vary significantly. Contact pressure influences fatigue strength through influencing the initiation of fatigue crack. The main damage patterns are fatigue flake and plow.
Resumo:
Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium.At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength.The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed.
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.
Resumo:
Predicting the ecological impacts of damaging invasive species under relevant environmental contexts is a major challenge, for which comparative functional responses (the relationship between resource availability and consumer uptake rate) have great potential. Here, the functional responses of Gammarus pulex, an ecologically damaging invader in freshwaters in Ireland and other islands, were compared with those of a native trophic equivalent Gammarus duebeni celticus. Experiments were conducted at two dissolved oxygen concentrations (80 and 50 % saturation), representative of anthropogenic water quality changes, using two larval prey, blackfly (Simuliidae spp.) and mayfly (Baetis rhodani). Overall, G. pulex had higher Type II functional responses and hence predatory impacts than G. d. celticus and the functional responses of both predators were reduced by lowered oxygen concentration. However, this reduction was of lower magnitude for the invader as compared to the native. Further, the invader functional response at low oxygen was comparable to that of the native at high oxygen. Attack rates of the two predators were similar, with low oxygen reducing these attack rates, but this effect occurred more strongly for blackfly than mayfly prey. Handling times were significantly lower for the invader compared with the native, and significantly higher at low oxygen, however, the effect of lowered oxygen on handling times was minimal for the invader and pronounced for the native. Maximum feeding rates were significantly greater for the invader compared with the native, and significantly reduced at low oxygen, with this effect again lesser for the invader as compared to the native. The greater functional responses of the invader corroborate with its impacts on recipient macroinvertebrate communities when it replaces the native. Further, our experiments predict that the impact of the invader will be less affected than the native under altered oxygen regimes driven by anthropogenic influences.
Resumo:
Phytochelatins (PCs) are required for arsenic (As) detoxification in nontolerant plants. In addition, a role for PCs in arsenate tolerance has recently been proven, with tolerant plants able to accumulate significantly higher concentrations of As-PC complexes at equivalent levels of stress than nontolerant plants. The relationship between arsenate influx and PC production in tolerant and non-tolerant Holcus lanatus plants was determined in this study, along with an investigation of the effect of inhibition of PC synthesis by buthionine sulfoximine (BSO) on arsenate tolerance. A strong correlation between PC production and arsenate influx was demonstrated in arsenate-tolerant plants. In addition, inhibition of PC synthesis by BSO in tolerant plants increased arsenate sensitivity to that of the nontolerant clone. This dramatic reduction in tolerance proves that PC production is an essential component of the arsenate tolerance mechanism in H. lanatus. This study proposes that while there is a single major gene for arsenate tolerance, hypostatic modifiers are also in operation, affecting the expression of the tolerance character. © New Phytologist (2002).
Resumo:
A significant increase in strength and performance of reinforced concrete, timber and metal beams may be achieved by adhesively bonding a fibre reinforced polymer composite, or metallic such as steel plate to the tension face of a beam. One of the major failure modes in these plated beams is the debonding of the plate from the original beam in a brittle manner. This is commonly attributed to the interfacial stresses between the adherends whose quantification has led to the development of many analytical solutions over the last two decades. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the effect of shear deformation in adherends. Few solutions consider this effect approximately but are limited to one or two specific loading conditions. This paper presents a more rigorous solution for interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered in closed form using Timoshenko’s beam theory. The solution is general to linear elastic analysis of prismatic beams of arbitrary cross section under arbitrary loading with a plate of any thickness bonded either symmetrically or asymmetrically with respect to the span of the beam.
Resumo:
RC beams shear-strengthened with externally-bonded FRP side strips or U-strips usually fail by debonding. As such debonding occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups may not have reached yielding at beam shear failure. Consequently, the internal steel stirrups cannot be fully utilized. This adverse shear interaction between internal steel stirrups and external FRP strips may significantly reduce the benefit of shear-strengthening FRP but has not been considered by any of the existing FRP strengthening design guidelines. In this paper, an improved shear strength model capable of accounting for the effect of the above shear interaction is first presented, in which the unfavorable effect of shear interaction is reflected through a reduction factor (i.e. shear interaction factor). Using a large test database established in the present study, the performance of the proposed model as well as that of three other shear strength models is then assessed. This assessment shows that the proposed shear strength model performs better than the three existing models. The assessment also shows that the inclusion of the proposed shear interaction factor in the existing models can significantly improve their performance.
Resumo:
The interaction between the face coat material of a mould and the titanium alloy will cause oxygen penetration during the casting and solidification process, resulting in the formation of an α-case interaction layer at the metal surface that influences the mechanical properties of the cast components. In this study, the influence of α-case thickness and loading positions in a Ti–6Al–4V (Ti64) alloy on metal hardness, impact properties and bending strength was investigated. The results showed that the metal surface α-case consisted of many coarse α laths which has a higher hardness than metal matrix. The mechanical properties of the alloy are influenced by the α-case. The alloy bending strength was observed to have changed linearly with the thickness of sample.
Resumo:
The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.
Resumo:
Reinforced concrete (RC) jacketing is a common method for retrofitting existing columns with poor structural performance. It can be applied in two different ways: if the continuity of the jacket is ensured, the axial load of the column can be transferred to the jacket, which will be directly loaded; conversely, if no continuity is provided, the jacket will induce only confinement action. In both cases the strength and ductility evaluation is rather complex, due to the different physical phenomena included, such as confinement, core-jacket composite action, preload and buckling of longitudinal bars.
Although different theoretical studies have been carried out to calculate the confinement effects, a practical approach to evaluate the flexural capacity and ductility is still missing. The calculation of these quantities is often related to the use of commercial software, taking advantage of numerical methods such as fibre method or finite element method.
This paper presents a simplified approach to calculate the flexural strength and ductility of square RC jacketed sections subjected to axial load and bending moment. In particular the proposed approach is based on the calibration of the stress-block parameters including the confinement effect. Equilibrium equations are determined and buckling of longitudinal bars is modelled with a suitable stress-strain law. Moment-curvature curves are derived with simple calculations. Finally, comparisons are made with numerical analyses carried out with the code OpenSees and with experimental data available in the literature, showing good agreement.