135 resultados para plasma density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first systematic observations of relativistic self-phase-modulation (RSPM) due to the interaction of a high intensity laser pulse with plasma. The plasma was produced in front of a solid target by the prepulse of a 100 TW laser beam. RSPM was observed by monitoring the spectrum of the harmonics generated by the intense laser pulse during the interaction. The multipeaked broadened spectral structure produced by RSPM was studied in plasmas with different density scale lengths for laser interactions at intensities up to 3.0x1019 W cm(-2) (a=p(osc)/m(e)c=4.7). The results are compared with calculated spectra and agreement is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the generation of high harmonics from the interaction of 150 fsec, 790 nm, and 395 nm laser pulses with solid targets. Experiments are presented that demonstrate a strong dependence of the conversion efficiency on the temporal pulse shape and the resulting density scale length (L/lambda) of the preformed plasma. The highest conversion efficiencies are achieved for short density scale lengths (L/lambda less than or equal to 0.4), which result from high contrast ratio pulse interactions. [S1063-651X(98)50211-5].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently using KrF high power laser (248 nm; 350 fs; 5.0x10(16) W/cm(2)) in the Rutherford Appleton Laboratory an experimental search for recombination extreme ultraviolet (XUV) laser action in Li-like nitrogen ions was performed. To understand the experimental results of line emission at 24.7 nm in the 3d(5/2)-2p(3/2) transition of the Li-like nitrogen ion a simulation was undertaken using a one-dimensional Lagrangian hydrodynamic code. From the simulation results, we confirmed that there was nonlinear dependence of spectral line emission on the gas density which was well matched to the experimental results. Only a six times increase of the 24.7 nm emission intensity was obtained when the plasma length was increased 1000 times from 1 mu m as an optically thin case to 1 mm. Also, the spatial profile of the electron density and temperature was obtained and the electron temperature was about 40-50 eV which was too high for the optical field ionization x-ray lasing. We could not find evidence of x-ray laser gain. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of current instabilities behind the front of a cylindrically expanding plasma has been investigated experimentally via proton probing techniques. A multitude of tubelike filamentary structures is observed to form behind the front of a plasma created by irradiating solid-density wire targets with a high-intensity (I~1019??W/cm2), picosecond-duration laser pulse. These filaments exhibit a remarkable degree of stability, persisting for several tens of picoseconds, and appear to be magnetized over a filament length corresponding to several filament radii. Particle-in-cell simulations indicate that their formation can be attributed to a Weibel instability driven by a thermal anisotropy of the electron population. We suggest that these results may have implications in astrophysical scenarios, particularly concerning the problem of the generation of strong, spatially extended and sustained magnetic fields in astrophysical jets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5 mu m in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved probe interferometry was used to obtain complete density mapping of laser produced plasmas. The plasma was produced by symmetrical irradiation of thin targets, to be used for short pulse delayed interaction experiments. The progress in the plasma characterization due to the use of a picosecond pulse probe is reported, and the relative merits of different target designs are also discussed. The two-dimensional density maps obtained appear to be in substantial agreement with two-dimensional hydrodynamic code predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reflex discharge plasma, obtained as a hybrid between a Penning discharge plasma (PDP) and a hollow-cathode discharge (HCD) plasma, is analysed as a possible direction-current, high-density plasma source. The experiment is run in oxygen at pressures of 10 mTorr and 1 mTorr, and for discharge currents of 100 to 200 mA. Although the gas pressure is considerably lower than those used in HCDs, the hollow-cathode effect (HCE) occurs for current levels higher than 100 mA and leads to plasma densities comparable with those obtained using inductive plasma sources. The presence of a constant magnetic field leads to the enhancement of electron emission from cathodes under ion bombardment, and to the decreasing of the ion loss by diffusion to the wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple Langmuir probe technique has been used to measure the electron density, electron temperature, and plasma potential in the late stages (>5 mu s) of a laser ablated plasma plume. In the plasma, formed following 248 nm laser irradiation of a copper target, in vacuum at a laser fluence of 2.5 J cm(-2), electron densities of similar to 10(18) m(-3) and temperatures of similar to 0.5 eV were measured. These values are comparable with those reported previously using Faraday cup detectors and optical emission spectroscopy, respectively. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper and its companion paper describe the comparison between a one-dimensional theoretical model of a hydrogen discharge in a magnetic multipole plasma source and experimental measurements of the plasma parameters. The discharge chamber, described here, has been designed to produce significant densities of H- ions by incorporating a weak transverse field through the discharge to obtain electron cooling so as to maximize H- production. Langmuir probes are used to monitor the plasma, determining the ion density, the electron density and temperature and the plasma potential. The negative density is measured by photo-detachment of the extra electron using an intense laser beam. The model, described in the companion paper, uses the presented source geometry to calculate these plasma quantities as a function of the major are parameters; namely the are current and voltage and gas pressure. Good agreement is obtained between theory and experiment as a function of position and arc parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariate Fokker-Planck-type kinetic equation modeling a test - panicle weakly interacting with an electrostatic plasma. in the presence of a magnetic field B . is analytically solved in an Ornstein - Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments and panicle density as a function of time. The process is diffusive.