202 resultados para photo-excitation
Resumo:
The correlated process of photodetaching two electrons from the F- ion following the absorption of a single photon has been investigated over an energy range 20-62 eV. In the experiment, a beam of photons from the Advanced Light Source was collinearly merged with a counter-propagating beam of F- ions from a sputter ion source. The F+ ions produced in the interaction region were detected, and the normalized signal was used to monitor the relative cross section for the double-detachment reaction. An absolute scale for the cross section was established by measuring the spatial overlap of the two beams and by determining the efficiency for collection and detection of the F+ ions. The measured cross section is compared with R-matrix and random phase approximation calculations. These calculations show that the Auger decay of the 2s2p(6) core-excited state of the F atom plays a minor role in the production of F+ ions and that double detachment is likely to be dominated by simultaneous correlated ejection of two valence electrons at energies well above threshold.
Resumo:
The development of cold trap-based positron beams and new scattering techniques has recently enabled the ?rst measurements of state-resolved positron-impact vibrational excitation cross sections. These measurements revealed a number of features worth further consideration, such as relatively sharp increases near threshold. This paper describes a comparison of the magnitudes and shapes of these cross sections with the predictions of the Born-dipole model. Agreement of the magnitudes of the cross sections varies widely, ranging from reasonable to excellent agreement for CO2 and CF4 to poor agreement for CO and CH4. In contrast, the energy dependence of these cross sections in all these cases is close to that predicted by the Born model.
Resumo:
In this paper we report an empirical study of the photographic portrayal of family members at home. Adopting a social psychological approach and focusing oil intergenerational power dynamics, our research explores the use of domestic photo displays in family representation. Parents and their teenagers from eight families in the south of England were interviewed at home about their interpretations of both stored and displayed photos within the home. Discussions centred on particular photographs found by the participants to portray self and family in different ways. The findings show that public displays of digital photos are still curated by mothers of the households, but with more difficulty and less control all with analogue photos. In addition, teenagers both contribute and comply with this curation within the home, whilst at the same time developing additional ways of presenting their families and themselves online that are 'unsupervised' by the curator. We highlight the conflict of interest that is at play within teen and parent practices and consider the challenges that this presents for supporting the representation of family through the design of photo display technology. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Rotational excitation of the carbon monosulphide (CS) molecule by thermal electron-impact is studied using the molecular R-matrix method combined with the adiabatic-nuclei-rotation (ANR) approximation. Rate coefficients are obtained for electron temperatures in the range 5-5000 K and for transitions involving levels up to J = 40. It is confirmed that dipole allowed transitions (Delta J = 1) are dominant and that the corresponding rate coefficients exceed those for excitation by neutrals by at least five orders of magnitude. As a result, the present rates should be included in any detailed population model of CS in sources where the electron fraction is larger than similar to 10(-5), in particular in diffuse molecular clouds and interstellar shocks.
Resumo:
In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Ni II. Attention is expressly concentrated on the optically allowed fine-structure transitions between the 3d 9, 3d 84s, and 3d 74s 2 even parity levels and the 3d 84p and 3d 74s 4p odd parity levels. The parallel RMATRXII R-matrix package has been recently extended to allow for the inclusion of relativistic fine-structure effects. This suite of codes has been utilized in conjunction with the parallel PSTGF and PSTGICF programs in order to compute converged total collision strengths for the allowed transitions with which this study is concerned. All 113 LS terms identified with the 3d 9, 3d 84s, 3d 74s 2, 3d 84p, and 3d 74s 4p basis configurations were included in the target wavefunction representation, giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering complex. Maxwellian averaged effective collision strengths have been computed at 30 individual electron temperatures ranging from 30 to 1,000,000 K. This range comfortably encompasses all temperatures significant to astrophysical and plasma applications. The convergence of the collision strengths is exhaustively investigated and comparisons are made with previous theoretical works, where significant discrepancies exist for the majority of transitions. We conclude that intrinsic in achieving converged collision strengths and thus effective collision strengths for the allowed transitions is the combined inclusion of contributions from the (N + 1) partial waves extending to a total angular momentum value of L = 50 and further contributions from even higher partial waves accomplished by employing a "top-up" procedure.
Resumo:
A detailed investigation on planar two dimensional metallodielectric dipole arrays with enhanced near-fields for sensing applications was carried out. Two approaches for enhancing the near-fields and increasing the quality factor were studied. The reactive power stored in the vicinity of the array at resonance increases rapidly with increasing periodicity. Higher quality factors are produced as a result. The excitation of the odd mode in the presence of a perturbation gives rise to a sharp resonance with near-field enhanced by at least an order of magnitude compared to unperturbed arrays. The trade-off between near-field enhancement and thermal losses was also studied, and the effect of supporting dielectric layers on thermal losses and quality factors were examined. Secondary transmissions due to the dielectric alone were found to enhance and reduce cyclically the quality factor as a function of the thickness of the dielectric material. The performance of a perturbed frequency selective surface in sensing nearby materials was investigated. Finally, unperturbed and perturbed arrays working at infrared frequencies were demonstrated experimentally. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3604785]
Resumo:
The experimental evidence of the correlation between the initial electron density of the plasma and electromagnetic soliton excitation at the wake of an intense (10(19) W/cm(2)) and short (1 ps) laser pulse is presented. The spatial distribution of the solitons, together with their late time evolution into post-solitons, is found to be dependent upon the background plasma parameters, in agreement with published analytical and numerical findings. The measured temporal evolution and electrostatic field distribution of the structures are consistent with their late time evolution and the occurrence of multiple merging of neighboring post-solitons. (C) 2011 American Institute of Physics. [doi:10.1063/1.3625261]
Resumo:
Variable-temperature magnetic susceptibility measurements in the solid state of the bis complex of tris(1-pyrazolyl)-methane with Fe(II), [Fe(tpm)2](ClO4)2, suggest the existence of singlet-quintet spin crossover with the singlet isomer largely favored at room temperature. In acetonitrile solution, measurement of the absorption spectrum as a function of temperature reveals a spin equilibrium with the quintet population varying from ca. 6% at 233 K to ca. 30% at 295 K. When the complex in solution is irradiated with a laser pulse at wavelengths within the ligand field absorption band of the singlet isomer, ground-state depletion occurs within the pulse duration followed by fast recovery to the original absorbance level with a time constant of 25 +/- 5ns. The recovery time is virtually independent of temperature over the range +23 to -43-degrees-C, but the signal:noise ratio of the transient signals increases with decreasing temperature. The effect was observable at several monitoring wavelengths spanning the LF and MLCT absorption regions of the complex but only when the irradiation wavelength fell within the LF absorption region. Irradiation within the MLCT band produced no effect other than that of laser pulse scatter. The observations are interpreted in terms of photoperturbation of the singlet-quintet spin state equilibrium, which in this case occurs solely through excitation in the ligand field absorption region of the complex and is the first reported instance of this type for a spin-crossover complex in solution.
Resumo:
The resonance Raman spectra of a water-soluble metalloporphyrin Cu(TMpy-P4), complexed with a synthetic nucleic acid, poly(dA-dT), were measured by using excitation wavelengths located within the B (Soret) transition of the porphyrin (417-470 nm), while its excited state was synchronously pumped with 545-nm pulsed excitation corresponding to the Q transition. In the presence of pump pulses, the aqueous solution of the Cu(TMpy-P4).poly(dA-dT) complex exhibits resonance Raman bands at 1558 and 1353 cm-1 that are not observed in the absence of pump pulses. These new features were previously assigned to electronically excited Cu(TMpy-P4), stabilized by forming an exciplex with the A-T sites of the nucleic acid. Here we present resonance Raman excitation profiles (RREP) of both the excited and ground states of the complex, and we experimentally confirm the very short lifetime of the exciplex. To our knowledge this is the first time that a RREP of a very short lived (ca. 20 ps) intermediate excited state has been obtained with a two-color experiment. We use this to help to characterize the nature of the porphyrin-AT specific complex formed in the porphyrin excited state.
Resumo:
In this paper, we present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for the complicated iron-peak ion Cr II. We consider specifically the allowed lines for transitions from the 3d(5) and 3d(4)4s even parity configuration states to the 3d(4)4p odd parity configuration levels. The parallel suite of R-Matrix packages, RMATRX II, which have recently been extended to allow for the inclusion of relativistic effects, were used to compute the collision cross sections. A total of 108 LS pi/280 J pi levels from the basis configurations 3d(5), 3d(4)4s, and 3d(4)4p were included in the wavefunction representation of the target including all doublet, quartet, and sextet terms. Configuration interaction and correlation effects were carefully considered by the inclusion of seven more configurations and a pseudo-corrector (4d) over bar type orbital. The 10 configurations incorporated into the Cr II model thus listed are 3d(5), 3d(4)4s, 3d(4)4p, 3d(3)4s(2), 3d(3)4p(2), 3d(3)4s4p, 3d(4)(4d) over bar, 3d(3)4s (4d) over bar, 3d(3)4p (4d) over bar, and 3d(3)(4d) over bar (2), constituting the largest Cr II target model considered to date in a scattering calculation. The Maxwellian averaged effective collision strengths are computed for a wide range of electron temperatures 2000-100,000 K which are astrophysically significant. Care has been taken to ensure that the partial wave contributions to the collision strengths for these allowed lines have converged with "top-up" from the Burgess-Tully sum rule incorporated. Comparisons are made with the results of Bautista et al. and significant differences are found for some of the optically allowed lines considered.
Resumo:
Collision strengths (Ω ) are calculated for all 6328 transitions among the lowest 113 levels belonging to the 2s22p5,2s2p6,2s22p43ℓ,2s2p53ℓ, and 2p63ℓ configurations of fluorine-like krypton, Kr XXVIII, using the Dirac Atomic R -matrix Code. All partial waves with angular momentum J⩽40 are included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions a top-up is employed to obtain converged values of Ω up to an energy of 400 Ryd. Resonances in the thresholds region are resolved on a narrow energy mesh, and results for effective collision strengths (ϒ) are obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. In addition, effective collision strengths are listed for the temperature range View the MathML source, obtained from non-resonant collision strengths generated with the FAC code.
Resumo:
We report calculations for energy levels, radiative rates and electron impact excitation rates for transitions in He-like Li II, Be III, B IV and C V. grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range up to 10(6) K. Comparisons have been made with similar data obtained from the flexible atomic code (FAC) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, have also been discussed. Additionally, lifetimes are also listed for all calculated levels of the above four ions.
Resumo:
In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like Si XII, He-like Si XIII and H-like Si XIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of Si XII, 49 levels of Si XIII and 25 levels of Si XIV, belonging to the n≤5 configurations. Collision strengths have been averaged over a Maxwellian electron velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 107 K. Comparisons have been made with similar data obtained from the flexible atomic code (fac) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, are also discussed. Additionally, lifetimes are listed for all calculated levels of the above three ions, although no measurements are available with which to compare.