112 resultados para phosphorus nutrition
Resumo:
Nutritional biomarkers-biochemical, functional, or clinical indices of nutrient intake, status, or functional effects--are needed to support evidence-based clinical guidance and effective health programs and policies related to food, nutrition, and health. Such indices can reveal information about biological or physiological responses to dietary behavior or pathogenic processes, and can be used to monitor responses to therapeutic interventions and to provide information on interindividual differences in response to diet and nutrition. Many nutritional biomarkers are available; yet there has been no formal mechanism to establish consensus regarding the optimal biomarkers for particular nutrients and applications.
Resumo:
The aim of this research was to explore consumer perceptions of personalised nutrition and to compare these across three different levels of "medicalization": lifestyle assessment (no blood sampling); phenotypic assessment (blood sampling); genomic assessment (blood and buccal sampling). The protocol was developed from two pilot focus groups conducted in the UK. Two focus groups (one comprising only "older" individuals between 30 and 60 years old, the other of adults 18-65 yrs of age) were run in the UK, Spain, the Netherlands, Poland, Portugal, Ireland, Greece and Germany (N = 16). The analysis (guided using grounded theory) suggested that personalised nutrition was perceived in terms of benefit to health and fitness and that convenience was an important driver of uptake. Negative attitudes were associated with internet delivery but not with personalised nutrition per se. Barriers to uptake were linked to broader technological issues associated with data protection, trust in regulator and service providers. Services that required a fee were expected to be of better quality and more secure. An efficacious, transparent and trustworthy regulatory framework for personalised nutrition is required to alleviate consumer concern. In addition, developing trust in service providers is important if such services to be successful. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The study assessed the effect of heating vermiculites on extractability of phosphorus, iron, zinc and manganese with respect to their potential agricultural use. Of these elements, phosphorus was from apatite and monazite that occur as accessory minerals in vermiculites. Vermiculites were heated at 15-800 degrees C and digested by acetic acid for extracting phosphorus and diethylene triamine pentaacetic acid (DTPA) for extracting zinc, iron and manganese. Phosphorus in the extract was analysed by a flow injection method while zinc, iron and manganese were measured by atomic absorption spectrometry. The results showed that heating vermiculites to 400 C enhanced extractability of phosphorus from apatite and monazite to a level of 335 mg kg(-1). Further heating to 800 degrees C reduced extractable phosphorus to less than 75 mg kg(-1). Maximum extractable zinc, iron and manganese found were 2.7, 19.1 and 22.9 mg kg(-1), respectively, values that are beneficial and tolerable by most plants. Thus, it was concluded that heating vermiculites to
Resumo:
Understanding the labile status of phosphorus (P) in sediments is crucial for managing a eutrophic lake, but it is hindered by lacking in situ data particularly on a catchment scale. In this study, we for the first time characterized in situ labile P in sediments with the Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique at a two-dimensional (2D), submillimeter resolution in a large eutrophic lake (Lake Taihu, China, with an area of 2338km2). The concentration of DGT-labile P in the sediment profiles showed strong variation mostly ranging from 0.01 to 0.35mgL-1 with a considerable number of hotspots. The horizontal heterogeneity index of labile P varied from 0.04 to 4.5. High values appeared at the depths of 0-30mm, likely reflecting an active layer of labile P under the sediment-water interface (SWI). Concentration gradients of labile P were observed from the high-resolution 1D DGT profiles in both the sediment and overlying water layers close to the SWI. The apparent diffusion flux of P across the SWI was calculated between -21 and 65ngcm-2d-1, which showed that the sediments tended to be a source and sink of overlying water P in the algal- and macrophyte-dominated regions, respectively. The DGT-labile P in the 0-30mm active layer showed a better correlation with overlying water P than the labile P measured by ex situ chemical extraction methods. It implies that in situ, high-resolution profiling of labile P with DGT is a more reliable approach and will significantly extend our ability in in situ monitoring of the labile status of P in sediments in the field.
Resumo:
Prominent theories of plant defence have predicted that plants growing on nutrient-poor soils produce more phenolic defence compounds than those on richer soils. Only recently has the Protein Competition Model (PCM) of phenolic allocation suggested that N and P limitation could have different effects because the nutrients are involved in different cellular metabolic processes. 2. We extend the prediction of the PCM and hypothesize that N will have a greater influence on the production of phenolic defensive compounds than P availability, because N limitation reduces protein production and thus competition for phenylalanine, a precursor of many phenolic compounds. In contrast, P acts as a recyclable cofactor in these reactions, allowing protein and hence phenolic production to continue under low P conditions. 3. We test this hypothesis by comparing the foliar concentrations of phenolic compounds in (i) phenotypes of 21 species growing on P-rich alluvial terraces and P-depleted marine terraces in southern New Zealand, and (ii) 87 species growing under similar climates on comparatively P-rich soils in New Zealand vs. P-depleted soils in Tasmania. 4. Foliar P concentrations of plants from the marine terraces were about half those of plants from alluvial soils, and much lower in Tasmania than in New Zealand. However, foliar concentrations of N and phenolic compounds were similar across sites in both comparisons, supporting the hypothesis that N availability is a more important determinant of plant investment in phenolic defensive compounds than P availability. We found no indication that reduced soil P levels influenced plant concentrations of phenolic compounds. There was wide variation in the foliar N and P concentrations among species, and those with low foliar nutrient concentrations produced more phenolics (including condensed tannins). 5. Our study is the first trait comparison extending beyond standard leaf economics to include secondary metabolites related to defence in forest plants, and emphasizes that N and P have different influences on the production of phenolic defence compounds. © 2009 British Ecological Society.
Resumo:
Milk in its natural form has a high food value, since it is comprised of a wide variety of nutrients which are essential for proper growth and maintenance of the human body. In recent decades, there has been an upsurge in milk consumption worldwide, especially in developing countries, and it is now forming a significant part of the diet for a high proportion of the global population. As a result of the increased demand, in addition to the growth in competition in the dairy market and the increasing complexity of the supply chain, some unscrupulous producers are indulging in milk fraud. This malpractice has become a common problem in the developing countries, which lack strict vigilance by food safety authorities. Milk is often subjected to fraud (by means of adulteration) for financial gain, but it can also be adulterated due to ill-informed attempts to improve hygiene conditions. Water is the most common adulterant used, which decreases the nutritional value of milk. If the water is contaminated, for example, with chemicals or pathogens, this poses a serious health risk for consumers. To the diluted milk, inferior cheaper materials may be added such as reconstituted milk powder, urea, and cane sugar, even more hazardous chemicals including melamine, formalin, caustic soda, and detergents. These additions have the potential to cause serious health-related problems. This review aims to investigate the impacts of milk fraud on nutrition and food safety, and it points out the potential adverse human health effects associated with the consumption of adulterated milk.