242 resultados para nurses’ reactions
Resumo:
Cationic dyes, such as methylene blue (MB), Thionine (TH) and Basic Fuschin (BF), but not anionic dyes, such as Acid Orange 7 (AO7), Acid Blue 9 (AB9) and Acid Fuschin (AF), are readily adsorbed onto mesoporous titania films at high pH (pH 11), i.e. well above the pzc of titania (pH 6.5), due to electrostatic forces of attraction and repulsion, respectively. The same anionic dyes, but not the cationic dyes, are readily adsorbed on the same titania films at low pH (pH 3), i.e. well below titania's pzc. MB appears to adsorb on mesoporous titania films at pH 11 as the trimer (lambda(max) = 570 nm) but, upon drying, although the trimer still dominates, there is an absorption peak at 665 nm, especially notable at low [MB], which may be due to the monomer, but more likely MB J-aggregates. In contrast, the absorption spectrum of AO7 adsorbed onto the mesoporous titania film at low pH is very similar to the dye monomer. For both MB and AO7 the kinetics of adsorption are first order and yield high rate constants (3.71 and 1.481 g(-1) min(-1)), indicative of a strong adsorption process. Indeed, both MB and AO7 stained films retained much of their colour when left overnight in dye-free pH 11 and 3 solutions, respectively, indicating the strong nature of the adsorption. The kinetics of the photocatalytic bleaching of the MB-titania films at high pH are complex and not well-described by the Julson-Ollis kinetic model [A.J. Julson, D.F. Ollis, Appl. Catal. B. 65 (2006) 315]. Instead, there appears to be an initial fast but not simple demethylation step, followed by a zero-order bleaching and further demethylation steps. In contrast, the kinetics of photocatalytic bleaching of the AO7-titania film give a good fit to the Julson-Ollis kinetic model, yielding values for the various fitting parameters not too dissimilar to those reported for AO7 adsorbed on P25 titania powder. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Strategies to produce an ultracold sample of carbon atoms are explored and assessed with the help of quantum chemistry. After a brief discussion of the experimental difficulties using conventional methods, two strategies are investigated. The first attempts to exploit charge exchange reactions between ultracold metal atoms and sympathetically cooled C+ ions. Ab initio calculations including electron correlation have been conducted on the molecular ions [LiC]+ and [BeC]+ to determine whether alkali or alkaline earth metals are a suitable buffer gas for the formation of C atoms but strong spontaneous radiative charge exchange ensure they are not ideal. The second technique involves the stimulated production of ultracold C atoms from a gas of laser cooled carbides. Calculations on LiC suggest that the alkali carbides are not suitable but the CH radical is a possible laser cooling candidate thanks to very favourable Frank-Condon factors. A scheme based on a four pulse STIRAP excitation pathway to a Feshbach resonance is outlined for the production of atomic fragments with near zero centre of mass velocity.
Resumo:
The transmetalation reaction of the aryllithium compound [Li(NCN)](2) (NCN is the monoanionic
Resumo:
Enantiopure arene cis-tetrahydrodiols of bromobenzene and iodobenzene have been obtained in good yields, from chemoselective hydrogenation (rhodium-graphite) of the corresponding cis-dihydrodiol metabolites. Palladium-catalysed substitution of the halogen, by hydrogen, boron, nitrogen and phosphorus nucleophiles, in the acetonide derivatives, has yielded highly functionalised products for application in synthesis with potential as scaffolds for chiral ligands.
Resumo:
Recent experiments on rapid neutral-neutral reactions involving the radical CN at low temperature and the neutral C atom at room temperature suggest that atom-neutral and radical-neutral reactions may be generally more rapid at low temperature than hitherto thought. We have included a variety of rapid neutral-neutral reactions in our gas-phase chemical models of quiescent, dense interstellar clouds. We find the calculated abundances of many molecules to be greatly changed from previous values. In particular, the peak 'early-time' abundances of organic molecules are reduced.
Resumo:
We present the rate coefficients of 2880 gas-phase reactions among 313 species involving 12 elements for use in astrochemical models. We describe the motivation behind this work and the caveats which attach to the data in general as well as to specific reactions. We give the permanent electric dipole moments of nearly all the 112 neutral molecules contained in the data set, so that rate coefficients can be calculated at the low temperatures of dark interstellar dust clouds. We have used the data to calculate the pseudo-time-dependent chemical evolution of a dark, dense interstellar cloud and present both early time and steady-state abundances for all 313 species.
Resumo:
Background: The use affixed-term employment has increased lately, particularly in Europe and in the health care sector. Previous studies have shown that especially among the health care sector employee's organizational justice perceptions and job control are important factors that are directly related to the welfare and attitudes of employees and may also help to buffer the negative impacts of many detrimental factors.
Resumo:
1,3-propanediol was subjected to a range of amination conditions. The N-heterocyclic carbene piano stool complex [Cp*IrCl2(bmim)] was found to be a good catalyst for amination and dehydration in toluene or ionic liquid; product compositions could be tuned by altering the ratio of diol to amine.
Resumo:
New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).
Resumo:
A one-pot sol-gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. In the first step, polymer stabilized Pt50Sn50 and Pt90Sn10 nanoparticles were obtained by a solvent-reduction method. Then, the nanoparticles were added to a metal oxide precursor sol, which was destabilized by solvent evaporation. After calcination, the obtained materials were tested in the hydrogenation of citral in both batch and continuous modes. The highest selectivity of 30% towards the unsaturated alcohols was obtained over supported Pt90Sn10 nanoparticles with a preferential formation of the cis-isomer (nerol) due to a unique confinement of the bimetallic nanoparticles in the mesoporous framework. The selectivity towards the unsaturated alcohols was further improved to 56% over the PtRu5Sn nanoparticles supported by impregnation onto mesoporous silica films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.
Resumo:
The initial kinetics of the oxidation of 4-chlorophenol, 4-CP, photocatalyzed by titania films and aqueous dispersions were studied as a function of oxygen partial pressure, P-O2, and incident light intensity, I. The reaction conditions were such that the kinetics were independent of [4-CP] but strongly dependent on PO2-a situation that allowed investigation of the less-often studied kinetics of oxygen reduction. The observed kinetics fit a pseudo-steady-state model in which the oxygen is Langmuir-adsorbed on the titania photocatalyst particles before being reduced by photogenerated electrons. The maximum rate of photocatalysis depends directly on I-beta, where, beta = 1 for films and 0.7 for dispersions of titania, indicating that the kinetics are dominated by the surface reactions of the photogenerated electrons and holes for the films and by direct recombination for the powder dispersions. Using the pseudo-first-order model, for both titania films and dispersions, the apparent Langmuir adsorption constant, K-LH, derived from a Langmuir-Hinshelwood analysis of the kinetics, appears to be largely independent of incident light intensity, unlike KLH for 4-CP Consequently, similar values are obtained for the Langmuir adsorption constant, K-ads, extracted from a pseudosteady-state analysis of the kinetics for oxygen on TiO2 dispersions and films in aqueous solution (i.e., ca. 0.0265 +/- 0.005 kPa(-1)), and for both films and dispersions, oxygen appears to be weakly adsorbed on TiO2 compared with 4-CP, at a rate that would take many minutes to reach equilibrium. The value of Kads for oxygen on titania particles dispersed in solution is ca. 4.7 times lower than that reported for the dark Langmuir adsorption isotherm; possible causes for this difference are discussed. (c) 2006 Elsevier Inc. All rights reserved.