193 resultados para nonlinear contraction
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.
Resumo:
Weakly nonlinear excitations in one-dimensional isotropic Heisenberg ferromagnetic chains with nearest- and next-nearest-neighbor exchange interactions are considered. Based on the properties of modulational stability of corresponding linear spin waves, the existence regions of bright and dark magnetic solitons of the system are discussed in the whole Brillouin zone. The antidark soliton mode which is convex soliton super-imposed with a plane wave component is obtained near the zero-dispersion points of the spin wave frequency spectrum. The analytical results are checked by numerical simulations. [S0163;1829(98)01838-4].