97 resultados para nitrogen retention


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ericoid mycorrhizal fungi have been shown to differ in their pattern of nitrogen (N) use in pure culture. Here, we investigate whether this functional variation is maintained in symbiosis using three ascomycetes from a clade not previously shown to include ericoid mycorrhizal taxa. Vaccinium macrocarpon and Vaccinium vitis-idaea were inoculated with three fungal strains known to form coils in Vaccinium roots, which differed in their patterns of N use in liquid culture. (15)N was used to trace the uptake of -N, -N and glutamine-N into shoots. (15)N transfer differed among the three fungal strains, including two that had identical internal transcribed spacer (ITS) sequences, and was quantitatively related to fungal growth in liquid culture at low carbon availability. These results demonstrate that functional differences among closely related ericoid mycorrhizal fungi are maintained in symbiosis with their hosts, and suggest that N transfer to plant shoots in ericoid mycorrhizas is under fungal control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic (As) is mobilized from delta and floodplain aquifer sediments throughout S.E. Asia via reductive dissolution of As bound to iron (Fe) oxyhydroxides. The reductive driving force is organic carbon, but its source and constitution is uncertain. Here batch incubation experiments were conducted to investigate the role of organic matter (OM) carbon:nitrogen (C:N) ratio on the mobilization of arsenic, Fe and N from As dosed, Fe oxyhydroxide coated sands. As mobilization into pore waters from the sand was strongly regulated by the C:N ratio of the OM, and also the concentration of OM present. The lower the C:N, the more As released. Fe and ammonium release were similarly dependent on the quality and quantity of OM, but Fe mobilization was more rapid and ammonium release slower than As suggesting that the mobilization of these 3 moieties although interdependent, were not directly linked. It was concluded that low C:N ratios for OM responsible for reducing aquifers were As in groundwater is observed were likely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared the ability of five strains of the ericoid mycorrhizal fungus Hymenoscyphus ericae to utilise glutamine, ammonium or nitrate at high or low carbon (C) availability. The pattern of intraspecific variation in growth was affected by C availability. When C supply was high, growth differences between strains were explained by the total amount of nitrogen (N) taken up, suggesting variation in uptake kinetics. Under C-limiting conditions, strain differences were linked with their nitrogen use efficiency, implying intraspecific differences in N metabolism. The relationship between growth on glutamine and pH shifts in the media indicated that there was intraspecific variation in glutamine transporters. In addition, the correlation between pH changes and the amount of glutamine-N recovered as ammonium in the media indicated that there were intraspecific variations within the enzymatic pathways involved in glutamine metabolism. Our findings, compared with those of a previous study involving the same ericoid strains, draw attention to the temporal variation in nitrogen source utilisation by ericoid mycorrhizal fungi when maintained in axenic culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on electron paramagnetic resonance (EPR) studies of nitrogen doped diamond that has been N-15 enriched, electron irradiated and annealed. EPR spectra from two new nitrogen containing S = 1/2 defects are detected and labelled WAR9 and WAR10. We show that the properties of these defects are consistent with them being the < 001 >-nitrogen split interstitial and the < 001 >-nitrogen split interstitial-< 001 >-carbon split interstitial pair, respectively. We also provide an explanation for why these defects have previously eluded discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-14, N-15, and C-13 hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV-) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the N-14 hyperfine interaction do not produce a satisfactory fit to the experimental NV- electron-paramagnetic-resonance data. The small anisotropic component of the NV- hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV- ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with C-13 neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest C-13 interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the numerous experimental and theoretical studies on the negatively charged nitrogen vacancy center (NV-) in diamond and the predictions that the neutral nitrogen vacancy center (NV0) should have an S=1/2 ground state, NV0 has not previously been detected by electron paramagnetic resonance (EPR). We report new EPR data on a trigonal nitrogen-containing defect in diamond with an S=3/2 excited state populated via optical excitation. Analysis of the spin Hamiltonian parameters and the wavelength dependence of the optical excitation leads to assignment of this S=3/2 state to the (4)A(2) excited state of NV0. This identification, together with an examination of the electronic structure of the NV centers in diamond, provides a plausible explanation for the lack of observation (to date) of an EPR signal from the NV0 ground state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age.