120 resultados para nanoscale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a method for tailoring local mechanical properties near channel surfaces of vascular structural polymers in order to achieve high structural performance in microvascular systems. While synthetic vascularized materials have been created by a variety of manufacturing techniques, unreinforced microchannels act as stress concentrators and lead to the initiation of premature failure. Taking inspiration from biological tissues such as dentin and bone, these mechanical deficiencies can be mitigated by complex hierarchical structural features near to channel surfaces. By employing electrostatic layer-by-layer assembly (ELbL) to deposit films containing halloysite nanotubes onto scaffold surfaces followed by matrix infiltration and scaffold removal, we are able to controllably deposit nanoscale reinforcement onto 200 micron diameter channel surface interiors in microvascular networks. High resolution strain measurements on reinforced networks under load verify that the halloysite reduces strain concentrations and improves mechanical performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning probe microscopy methods have been used to electrodeposit and cycle micron-scale Li anodes deposited electrochemically under nanofabricated Au current collectors. An average Li volume of 5 x 10(8) nm(3) was deposited and cycled with 100% coulombic efficiency for similar to 160 cycles. Integrated charge/discharge values agree with before/after topography, as well as in situ dilatometry, suggesting this is a reliable method to study solid-state electrochemical processes. In this work we illustrate the possibility to deposit highly cyclable nanometer thick Li electrodes by mature SPM and nanofab techniques which can pave the way for inexpensive nanoscale battery arrays. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a low-damage method for direct and rapid fabrication of arrays of epitaxial BiFeO3(BFO) nanoislands. An array of aluminium dots is evaporated through a stencil mask on top of an epitaxial BiFeO3 thin film. Low energy focused ion beam milling of an area several microns wide containing the array-covered film leads to removal of the bismuth ferrite in between the aluminium-masked dots. By chemical etching of the remaining aluminium, nanoscale epitaxial bismuth ferrite islands with diameter ∼250 nm were obtained. Piezoresponse force microscopy showed that as-fabricated structures exhibited good piezoelectric and ferroelectric properties, with polarization state retention of several days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics concerning local coercive fields, and piezoelectric coefficient. In fact, the data obtained reveal imprints during piezoresponse force microscopy measurements, nonlinearity in the piezoelectric deformation, and limited polarization reversal. Moreover, transmission electron microscopy shows the presence of defects near the film/substrate interface, which can be associated with the variations of piezoelectric properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work is an evaluation of quantitative measurements of piezoresponse force microscopy for nanoscale characterization of ferroelectric films. To this end, we investigate how the piezoresponse phase difference Delta Phi between c domains depends on the frequency omega of the applied ac field much lower than the cantilever first resonance frequency. The main specimen under study was a 102 nm thick film of Pb(Zr(0.2)Ti(0.8))O(3). For the sake of comparison, a 100 nm thick PbTiO(3) film was also used. From our measurements, we conclude a frequency dependent behavior Delta Phi similar to omega(-1), which can only be partially explained by the presence of adsorbates on the surface. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method has been invented for determining nanoscale variations in the distribution of electric charge on surfaces. It has so far been used to examine specific inorganic materials, but could find widespread applications in imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor- based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro- and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetisation vs. temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment FCC layer at the seed interface topped with a higher moment HCP layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetisation was found to drop with increasing unit cell size. In-situ annealed rare earth films exceeded the saturation magnetisation of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetisation and operating temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present core–shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core–shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and ellipsometric measurements in transmission, and applying a magnetic field to the sample, it is possible to modulate the value of the phase angle (Del {Δ}) between the S and P polarised components. It was found that the core–shell sample produced an order of magnitude larger variation in Del with changing magnetic field direction, compared with hollow cobalt tubes. The enhancement of magneto optical properties through the plasmonic nature of the gold core is complemented with the ability to induce magnetic influence over optical properties via an externally applied field. Moreover, we demonstrate for the first time the ability to use the remanent magnetisation of the Co, in conjunction with the optical properties defined by the Au, to observe remanent optical states in this uniquely designed structure. This new class of magnetoplasmonic metamaterial has great potential in a wide range of applications, from bio-sensing to data storage due to the tuneable nature of multiple resonance modes and dual functionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a multi-level wordline driver scheme is presented to improve SRAM read and write stability while lowering power consumption during hold operation. The proposed circuit applies a shaped wordline voltage pulse during read mode and a boosted wordline pulse during write mode. During read, the applied shaped pulse is tuned at nominal voltage for short period of time, whereas for the remaining access time, the wordline voltage is reduced to a lower level. This pulse results in improved read noise margin without any degradation in access time which is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during hold mode, the wordline voltage starts from a negative value and reaches zero voltage, resulting in a lower leakage current compared to conventional SRAM. Our simulations using TSMC 65nm process show that the proposed wordline driver results in 2X improvement in static read noise margin while the write margin is improved by 3X. In addition, the total leakage of the proposed SRAM is reduced by 10% while the total power is improved by 12% in the worst case scenario of a single SRAM cell. The total area penalty is 10% for a 128Kb standard SRAM array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a multi-level wordline driver scheme is presented to improve 6T-SRAM read and write stability. The proposed wordline driver generates a shaped pulse during the read mode and a boosted wordline during the write mode. During read, the shaped pulse is tuned at nominal voltage for a short period of time, whereas for the remaining access time, the wordline voltage is reduced to save the power consumption of the cell. This shaped wordline pulse results in improved read noise margin without any degradation in access time for small wordline load. The improvement is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during the hold mode, for a short time (depending on the size of boosting capacitance), wordline voltage becomes negative and charges up to zero after a specific time that results in a lower leakage current compared to conventional SRAM. The proposed technique results in at least 2× improvement in read noise margin while it improves write margin by 3× for lower supply voltages than 0.7 V. The leakage power for the proposed SRAM is reduced by 2% while the total power is improved by 3% in the worst case scenario for an SRAM array. The main advantage of the proposed wordline driver is the improvement of dynamic noise margin with less than 2.5% penalty in area. TSMC 65 nm technology models are used for simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proliferation of mobile devices in society accessing data via the ‘cloud’ is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in2. This requires increased performance from the magnetic pole of the electromagnetic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm x 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. Opportunistically, it points the way towards a new nanoscale magnetic field source to further develop in situ Transmission Electron Microscopy.