122 resultados para motivational pathways
Resumo:
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
Resumo:
The operant learning theory account of behaviors of clinical significance in people with intellectual disability (ID) has dominated the field for nearly 50 years. However, in the last two decades, there has been a substantial increase in published research that describes the behavioral phenotypes of genetic disorders and shows that behaviors such as self-injury and aggression are more common in some syndromes than might be expected given group characteristics. These cross-syndrome differences in prevalence warrant explanation, not least because this observation challenges an exclusively operant learning theory account. To explore this possible conflict between theoretical account and empirical observation, we describe the genetic cause and physical, social, cognitive and behavioral phenotypes of four disorders associated with ID (Angleman, Cornelia de Lange, Prader-Willi and Smith-Magenis syndromes) and focus on the behaviors of clinical significance in each syndrome. For each syndrome we then describe a model of the interactions between physical characteristics, cognitive and motivational endophenotypes and environmental factors (including operant reinforcement) to account for the resultant behavioral phenotype. In each syndrome it is possible to identify pathways from gene to physical phenotype to cognitive or motivational endophenotype to behavior to environment and back to behavior. We identify the implications of these models for responsive and early intervention and the challenges for research in this area. We identify a pressing need for meaningful dialog between different disciplines to construct better informed models that can incorporate all relevant and robust empirical evidence.
Resumo:
Distinct neural populations carry signals from short-wave (S) cones. We used individual differences to test whether two types of pathways, those that receive excitatory input (S+) and those that receive inhibitory input (S-), contribute independently to psychophysical performance. We also conducted a genome-wide association study (GWAS) to look for genetic correlates of the individual differences. Our psychophysical test was based on the Cambridge Color Test, but detection thresholds were measured separately for S-cone spatial increments and decrements. Our participants were 1060 healthy adults aged 16-40. Test-retest reliabilities for thresholds were good (ρ=0.64 for S-cone increments, 0.67 for decrements and 0.73 for the average of the two). "Regression scores," isolating variability unique to incremental or decremental sensitivity, were also reliable (ρ=0.53 for increments and ρ=0.51 for decrements). The correlation between incremental and decremental thresholds was ρ=0.65. No genetic markers reached genome-wide significance (p-7). We identified 18 "suggestive" loci (p-5). The significant test-retest reliabilities show stable individual differences in S-cone sensitivity in a normal adult population. Though a portion of the variance in sensitivity is shared between incremental and decremental sensitivity, over 26% of the variance is stable across individuals, but unique to increments or decrements, suggesting distinct neural substrates. Some of the variability in sensitivity is likely to be genetic. We note that four of the suggestive associations found in the GWAS are with genes that are involved in glucose metabolism or have been associated with diabetes.
Resumo:
This paper provides an integrated overview of the factors which control gelation in a family of dendritic gelators based on lysine building blocks. In particular, we establish that higher generation systems are more effective gelators, amide linkages in the dendron are better than carbamates, and long alkyl chain surface groups and a carboxylic acid at the focal point enhance gelation. The gels are best formed in relatively low polarity solvents with no hydrogen bond donor ability and limited hydrogen bond acceptor capacity. The dendrons with acid groups at the focal point can form two component gels with diaminododecane, and in this case, it is the lower generation dendrons which can avoid steric hindrance and form more effective gels. The stereochemistry of lysine is crucial in self-assembly, with opposite enantiomers disrupting each other's molecular recognition pathways. For the two-component system, stoichiometry is key, if too much diamine is present, dendron-stabilised microcrystals of the diamine begin to form. Interestingly, gelation still occurs in this case, and the systems with amides/alkyl chains are more effective gels, as a consequence of enhanced dendron-dendron intermolecular interactions allowing the microcrystals to form an interconnected network.
Resumo:
We report the synthesis of a family of gelators in which alkyl chains are connected to the amino groups of L-lysine methyl ester using a range of different hydrogen bonding linking groups (carbamate, amide, urea, thiourea and diacylhydrazine) using simple synthetic methodology based on isocyanate or acid chloride chemistry. The ability of these compounds to gelate organic solvents such as toluene or cyclohexane can be directly related to the ability of the linking group to form intermolecular hydrogen bonds. In general terms, the ability to structure solvents can be considered as: thiourea <carbamate <amide <urea similar to diacylhydrazine. This process has been confirmed by thermal measurements, scanning electron microscopy (SEM) and infrared and circular dichroism spectroscopies. By deprotecting the methyl ester group, we have demonstrated that a balance between hydrophobic and hydrophilic groups is essential-if the system has too much hydrophilicity (e. g., diacylhydrazine, urea) it will not form gels due to low solubility in the organic media. However, the less effective gelators based on amide and carbamate linkages are enhanced by converting the methyl ester to a carboxylic acid. Furthermore, subsequent mixing of the acid with a second component (diaminododecane) further enhances the ability to form networks, and, in the case of the amide, generates a two-component gel, which can immobilise a wide range of solvents of industrial interest including petrol and diesel (fuel oils), olive oil and sunflower oil (renewable food oils) and ethyl laurate, isopropyl myristate and isopropyl palmitate (oils used in pharmaceutical formulation). The gels are all thermoreversible, and may therefore be useful in controlled release/formulation applications.
Resumo:
The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).
Resumo:
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.
Resumo:
The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34 + cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript andor exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicingprocessing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expressionsplicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34 + cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processespathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.