94 resultados para modular forms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the impact of age, various forms of cataract, and visual acuity on whole-field scotopic sensitivity screening for glaucoma in a rural population. DESIGN: Clinic-based study with population-based recruitment. SETTING: Jin Shan Township near Taipei, Taiwan. SUBJECTS: Three hundred forty-six residents (ages, > or = 40 years) of Jin Shan Township. INTERVENTIONS: Whole-field scotopic testing, ophthalmoscopy with dilation of the pupils, cataract grading against photographic standards, and screening visual field testing in a random one-third subsample. MAIN OUTCOME MEASURES: Whole-field scotopic sensitivity (in decibels) and diagnostic status as a case of glaucoma, glaucoma suspect, or normal. RESULTS: Participants in Jin Shan Township did not differ significantly in the rate of blindness, low visual acuity, or family history of glaucoma from a random sample of nonrespondents. Scotopic sensitivity testing detected 100% (6/6) of subjects with open-angle glaucoma at a specificity of 80.2%. The mean +/- SE scotopic sensitivity for six subjects with open-angle glaucoma (32.78 +/- 1.51 dB) differed significantly from that of 315 normal individuals (38.51 +/- 0.22 dB), when adjusted for age and visual acuity (P = .05, t test). With linear regression modeling, factors that correlated significantly with scotopic sensitivity were intraocular pressure, screening visual field, best corrected visual acuity, presence of cortical cataract, and increasing age. CONCLUSIONS: Although cataract affects the whole-field scotopic threshold, it appears that scotopic testing may be of value in field-based screening for glaucoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeVm^-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.