173 resultados para leaf epidermal features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach which enables new parameters to be added to a CAD model for optimization purposes. It aims to remove a common roadblock to CAD based optimization, where the parameterization of the model does not offer the shape sufficient flexibility for a truly optimized shape to be created. A technique has been developed which uses adjoint based sensitivity maps to predict
the sensitivity of performance to the addition to a model of four different feature types, allowing the feature providing the greatest benefit to be selected. The optimum position to add the feature is also discussed. It is anticipated that the approach could be used to iteratively add features to a model, providing greater flexibility to the shape of the model, and allowing the newly-added parameters to be used as design variables in a subsequent shape optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetative and reproductive development of some European and Californian species of Laurencia Lamouroux (Ceramiales, Rhodophyta), L. obtusa (Hudson) Lamouroux, L. spectabilis Postels et Ruprecht, L. crispa Hollenberg, L. osmunda (S.G. Gmelin) Maggs et Hommersand, L. pinnatifida (Hudson) Lamouroux and L. truncata Kutzing, is investigated on the basis of liquid-preserved and herbarium specimens. The latter five species share several features, but they differ distinctly from L. obtusa, the lectotype of the genus, in essential anatomical characters of vegetative and male reproductive structures and tetrasporangial development. In these five species each vegetative axial segment produces two rather than four pericentral cells, and spermatangial branches (filaments) are produced in apical pits of branchlets from apical and epidermal cells rather than from trichoblasts arising from axial cells. The spermatangial branches are usually branched alternately and usually terminate in a cluster of several large sterile vesicular cells, rather than being branched dichotomously and terminating in a single, or occasionally a row of two, large sterile vesicular cells as in L. obtusa. Apical spermatangial pits of fertile male branchlets (except for those in L. truncata) are pocket- (or urn)-shaped, with an ostiole-like upper opening, rather than cup- (or bowl)-shaped. In these five species tetrasporangia are produced laterally from random epidermal cells rather than abaxially from particular pericentral cells (the third and fourth ones) as in L. obtusa, and the two presporangial cover cells are aligned parallel rather than transverse to the stichidial axis in surface view. These important differences strongly suggest that L. spectabilis, L. crispa, L. osmunda, L. pinnatifida and L. truncata occupy a phylogenetically different position from L. obtusa, and lead to the conclusion that the genus Osmundea Stackhouse, which was based on 0. expansa Stackhouse, nom. illeg. (= Laurencia osmunda) and which has been a nomen rejiciendum as an earlier facultative synonym of Laurencia, should be resurrected. Emendations of the generic criteria of Laurencia and Osmundea are proposed here, and relevant nomenclatural changes for several Laurencia species are also included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.

Relevância:

20.00% 20.00%

Publicador: